Tm~(3+)/Dy~(3+)共掺铋酸盐玻璃的1.47μm宽带发光
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:1.47μm Broadband Emission of Tm~(3+)/Dy~(3+) Co-Doped Bismuth Glass
  • 作者:金文田 ; 赵国营 ; 徐玲芝 ; 邱娟 ; 侯京山 ; 刘玉峰 ; 房永征 ; 廖梅松 ; 胡丽丽
  • 英文作者:Jin Wentian;Zhao Guoying;Xu Lingzhi;Qiu Juan;Hou Jingshan;Liu Yufeng;Fang Yongzheng;Liao Meisong;Hu Lili;School of Materials Science and Engineering,Shanghai Institute of Technology;Key Laboratory of Materials for High Power Laser,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;
  • 关键词:材料 ; 铋酸盐玻璃 ; 宽带近红外发光 ; 铥镝共掺杂 ; 光纤放大器
  • 英文关键词:materials;;bismuth glass;;broadband near-infrared emission;;Tm3+/Dy3+ co-doping;;fiber amplifier
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:上海应用技术大学材料科学与工程学院;中国科学院上海光学精密机械研究所强激光材料重点实验室;
  • 出版日期:2018-09-10
  • 出版单位:中国激光
  • 年:2018
  • 期:v.45;No.501
  • 基金:国家自然科学基金(51472162,61605115);; 上海市扬帆计划(15YF1411800);; 上海应用技术大学特聘教授计划(TP2014061)
  • 语种:中文;
  • 页:JJZZ201809029
  • 页数:7
  • CN:09
  • ISSN:31-1339/TN
  • 分类号:250-256
摘要
采用高温熔融法制备了Tm~(3+)/Dy~(3+)共掺杂铋酸盐玻璃样品。利用样品的差热分析曲线、拉曼光谱、红外透过光谱、吸收光谱、荧光光谱和荧光衰减曲线,对800nm激光二极管抽运下样品的1.47μm宽带发光特性进行了研究。研究结果表明,制备的铋酸盐玻璃具有良好的热稳定性、较低的声子能量和较高的红外透过率。当Dy~(3+)的摩尔分数为0.3%时,实现了对Tm~(3+)的1.47μm发光的敏化增强,其荧光谱线的半峰全宽为118nm。计算得到1.47μm发光的最大受激发射截面为4.37×10~(-21) cm~2,光纤放大品质因子为5.31×10~(-26) cm~3。
        The samples of the Tm~(3+)/Dy~(3+) co-doped bismuth glasses are successfully prepared by the conventional high temperature melt-quenching method.By means of the differential scanning calorimetry curves,Raman spectra,absorption spectra,infrared transmittance spectra,fluorescence spectra and fluorescence decay curves of the samples,the 1.47μm broadband emission properties of the samples pumped by 800 nm laser diode(LD)are investigated.The results show that,the prepared bismuth glasses have a good thermal stability,a low phonon energy and a high infrared transmissivity.When the mole fraction of Dy~(3+) is 0.3%,the sensitivity enhancement of the 1.47μm emission of Tm~(3+) is achieved and the full-width at half-maximum of the fluorescence spectrum is 118 nm.The calculated maximum stimulated emission cross section of 1.47μm emission is 4.37×10~(-21) cm~2 and the figure of merit for the fiber amplification is 5.31×10~(-26) cm~3.
引文
[1]Zhou B,Lin H,Pun E Y-B.Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20μm wavelength region[J].Optics Express,2010,18(18):18805-18810.
    [2]Zhou B,Pun E Y-B.Broadband near-infrared photoluminescence and energy transfer in Tm3+/Er3+-codoped low phonon energy gallate bismuth lead glasses[J].Journal of Physics D:Applied Physics,2011,44(28):285404.
    [3]Rivera V A G,El-Amraoui M,Ledemi Y,et al.Expanding broadband emission in the near-IR via energy transfer between Er3+-Tm3+co-doped tellurite-glasses[J].Journal of Luminescence,2014,145(1):787-792.
    [4]Son D H,Kim B H,Lee S H,et al.Ultrabroadband near-infrared emission in bismuth borosilicate glasses incorporated with Er3+,Tm3+,and Yb3+ions[J].Journal of Non-Crystalline Solids,2014,402(13):106-110.
    [5]Tanabe S.Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication[J].Comptes Rendus Chimie,2002,5(12):815-824.
    [6]Tetsuro K,Takashi Y,Tomoki S,et al.Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47μm[J].IEEEJournal of Quantum Electronics,1995,31(11):1880-1889.
    [7]Wang J,Lincoln J R,Brocklesby W S,et al.Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+[J].Journal of Applied Physics,1993,73(12):8066-8075.
    [8]Zhang Z H,Ren J,Yan Q Q,et al.Mutually enhanced near infrared emission of Dy3+and Tm3+co-doped chalcohalide glasses[J].Journal of Luminescence,2013,141(17):76-79.
    [9]Sanz J,Cases R,AlcaláR.Optical properties of Tm3+in fluorozirconate glass[J].Journal of NonCrystalline Solids,1987,93(2):377-386.
    [10]Reisfeld R,Boehm L,Spector N.Multiphonon relaxation rates and fluorescence lifetimes for Tm3+in four oxide glasses[J].Chemical Physics Letters,1977,49(2):251-254.
    [11]Han Y S,Lee D J,Heo J.1.48μm emission properties and the cross-relaxation mechanism in chalcohalide glass doped with Tm3+[J].Journal of Non-Crystalline Solids,2003,321(3):210-216.
    [12]Balda R,Fernández J,García-Revilla S,et al.Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5glass[J].Optics Express,2007,15(11):6750-6761.
    [13]Komukai T,Yamamoto T,Sugawa T,et al.Efficient upconversion pumping at 1.064μm of Tm3+-doped fluoride fibre laser operating around1.47μm[J].Electronics Letters,1992,28(9):830-832.
    [14]Percival R M,Szebesta D,Williams J R.Highly efficient 1.064μm upconversion pumped 1.47μm thulium doped fluoride fibre laser[J].Electronics Letters,1994,30(13):1057-1058.
    [15]Taylor E R,Ng L N,Sessions N P,et al.Spectroscopy of Tm3+-doped tellurite glasses for 1470nm fiber amplifier[J].Journal of Applied Physics,2002,92(1):112-117.
    [16]Shi D M,Zhang Q Y.Enhanced 1.47μm emission and lowered upconversion of Tm3+-doped gallategermanium-bismuth-lead glass by codoping rare earths[J].Journal of Applied Physics,2008,104(12):123517.
    [17]Cho D H,Choi Y G,Kim K H.Energy transfer from Tm3+3F4 to Dy3+6 H11/2 in oxyfluoride tellurite glasses[J].Chemical Physics Letters,2000,322(3):263-266.
    [18]Chung W J,Choi Y G.1.4μm emission properties and local environments of Tm3+ions in tellurite glass modified with MoO3[J].Journal of Luminescence,2010,130(11):2175-2179.
    [19]Guo H T,Liu L,Wang Y Q,et al.Host dependence of spectroscopic properties of Dy3+-doped and Dy3+,Tm3+-codped Ge-Ga-S-CdI2chalcohalide glasses[J].Optics Express,2009,17(17):15350-15358.
    [20]Man S Q,Wong S F,Pun E Y-B,et al.1.47-μm emission and multiphonon relaxation of Tm3+ions in potassium bismuth gallate glasses[J].Journal of the Optical Society of America,2004,21(2):313-317.
    [21]Li K F,Fan H Y,Zhang G,et al.Broadband nearinfrared emission in Er3+-Tm3+co-doped bismuthate glasses[J].Journal of Alloys and Compounds,2011,509(6):3070-3073.
    [22]Wang T,Fan H Y,Zhao G Y,et al.Optical properties of Yb3+doped bismuth glasses[J].Chinese Journal of Lasers,2017,44(9):0903001.汪韬,范慧艳,赵国营,等.Yb3+掺杂铋酸盐玻璃的发光特性[J].中国激光,2017,44(9):0903001.
    [23]HrubA.Evaluation of glass-forming tendency by means of DTA[J].Czechoslovak Journal of Physics,1972,22(11):1187-1193.
    [24]Baia L,Stefan R,Kiefer W,et al.Structural characteristics of B2O3-Bi2O3 glasses with high transition metal oxide content[J].Journal of Raman Spectroscopy,2005,36(3):262-266.
    [25]Gao G J,Hu L L,Fan H Y,et al.Effect of Bi2O3on physical,optical and structural properties of boron silicon bismuthate glasses[J].Optical Materials,2009,32(1):159-163.
    [26]Pan Z,Henderson D O,Morgan S H.Vibrational spectra of bismuth silicate glasses and hydrogeninduced reduction effects[J].Journal of NonCrystalline Solids,1994,171(2):134-140.
    [27]Ehrmann P R,Carlson K,Campbell J H,et al.Neodymium fluorescence quenching by hydroxyl groups in phosphate laser glasses[J].Journal of NonCrystalline Solids,2004,349(6):105-114.
    [28]Tian Y,Xu R R,Guo Y Y,et al.Mid-infrared luminescence and energy transfer of Dy3+/Tm3+doped fluorophosphate glass[J].Journal of Luminescence,2012,132(8):1873-1878.
    [29]Judd B R.Optical absorption intensities of rare-earth ions[J].Physical Review,1962,127(3):750-761.
    [30]Ofelt G S.Intensities of crystal spectra of rare-earth ions[J].The Journal of Chemical Physics,1962,37(3):511-520.
    [31]Sasikala T,Rama Moorthy L.Photoluminescence properties of singly doped Tm3+and co-doped Tm3+/Tb3+ions in tellurite glasses[J].Journal of Molecular Structure,2014,1076:529-534.
    [32]Balda R,Lacha L M,Fernández J,et al.Spectroscopic properties of the 1.4μm emission of Tm3+ions in TeO2-WO3-PbO glasses[J].Optics Express,2008,16(16):11836-11846.
    [33]Yang Z Y,Luo L,Chen W.The 1.23and 1.47μm emissions from Tm3+in chalcogenide glasses[J].Journal of Applied Physics,2006,99(7):076107.
    [34]Weber M J,Ziegler D C,Angell C A.Tailoring stimulated emission cross sections of Nd3+laser glass:Observation of large cross sections for BiCl3glasses[J].Journal of Applied Physics,1982,53(6):4344-4350.
    [35]Qian G Q,Tang G W,Qian Q,et al.Study on midinfrared spectral properties of Ho3+/Yb3+co-doped fluorogermanate glasses[J].Acta Optica Sinica,2016,36(6):0616002.钱国权,唐国武,钱奇,等.Ho3+/Yb3+共掺杂氟锗酸盐玻璃中红外光谱性质研究[J].光学学报,2016,36(6):0616002.
    [36]Zhou D C,Wang R F,Yang Z W,et al.Spectroscopic properties of Tm3+doped TeO2-R2O-La2O3 glasses for 1.47μm optical amplifiers[J].Journal of Non-Crystalline Solids,2011,357(11/12/13):2409-2412.
    [37]Chen G,Zhang Q,Cheng Y,et al.Spectroscopic properties and energy transfer of Tm3+/Ho3+-codoped TeO2-WO3-ZnO glasses for 1.47μm amplifier[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,72(4):734-737.
    [38]Lin H,Wang X Y,Lin L,et al.Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8μm infrared laser[J].Journal of Physics D:Applied Physics,2007,40(12):3567-3572.
    [39]Balda R,Lacha L M,Fernández J,et al.Optical spectroscopy of Tm3+ions in GeO2-PbO-Nb2O5glasses[J].Optical Materials,2005,27(11):1771-1775.
    [40]Lin H,Wang X Y,Li C M,et al.Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S-and U-band amplifiers and 1.8μm infrared laser[J].Journal of Luminescence,2008,128(1):74-80.
    [41]Naftaly M,Shen S X,Jha A.Tm3+-doped tellurite glass for a broadband amplifier at 1.47μm[J].Applied Optics,2000,39(27):4979-4984.
    [42]Sheng Q C,Wang X L,Chen D P.Enhanced broadband 2.0μm emission and energy transfer mechanism in Ho-Bi co-doped borophosphate glass[J].Journal of the American Ceramic Society,2012,95(10):3019-3021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700