激光冲击强化对304不锈钢疲劳寿命的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Laser Shock Processing on Fatigue Life of 304 Stainless Steel
  • 作者:汪军 ; 李民 ; 汪静雪 ; 张兴权 ; 魏伟 ; 戚晓利 ; 王会廷
  • 英文作者:Wang Jun;Li Min;Wang Jingxue;Zhang Xingquan;Wei Wei;Qi Xiaoli;Wang Huitin;School of Mechanical Engineering,Anhui University of Technology;
  • 关键词:激光技术 ; 激光冲击强化 ; 304不锈钢 ; 微观形貌 ; 残余应力 ; 疲劳寿命
  • 英文关键词:laser technique;;laser shock processing;;304 stainless steel;;microscopic morphology;;residual stress;;fatigue life
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:安徽工业大学机械工程学院;
  • 出版日期:2018-09-17 08:30
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.505
  • 基金:国家自然科学基金(51675002,51175002);; 安徽省自然科学基金(1708085ME110);; 安徽省高校自然科学基金(KJ2016A813);; 机械工程浙江省重中之重学科开放基金(ZSTUME02A05);; 安徽工业大学研究生创新研究基金(2016073)
  • 语种:中文;
  • 页:JJZZ201901013
  • 页数:8
  • CN:01
  • ISSN:31-1339/TN
  • 分类号:100-107
摘要
采用波长为1064nm、脉冲宽度约为10ns的激光束对304不锈钢进行双面冲击强化处理(LSP),利用三维形貌仪观察LSP试样的表面形貌,采用X射线应力仪测量试样表面的残余应力;采用伺服液压疲劳试验机对试样进行疲劳试验,以得到疲劳裂纹扩展速率曲线;采用扫描电子显微镜观察试样裂纹扩展不同阶段的断口形貌。结果表明:激光冲击强化处理可使试样表面产生最大变形量约为25μm的塑性变形,形成最大值为-218 MPa的残余压应力,并可使裂纹源向试样内部转移;激光冲击强化能显著降低冲击区域处的裂纹扩展速率。基于疲劳裂纹扩展速率曲线再次验证了激光冲击处理可显著提高304不锈钢的抗疲劳性能。
        The 304 stainless steel plates are double-sided shocked by laser beam with a wavelength of 1064 nm and the pulse width of 10 ns,the surface morphology of sample treated by laser shock processing(LSP)is observed by a three-dimensional profilometer,and the residual stress of the specimen surface is measured by an X-ray diffractometer,respectively.And a servo-hydraulic fatigue test machine is employed to implement the fatigue experiments on samples without and with LSP to obtain the fatigue crack growth rate curves.In addition,a scanning electron microscope(SEM)is applied to detect the fracture morphology at different crack growth stages.The experimental results indicate that LSP can not only cause plastic deformation to a maximum value of 25μm and form compressive residual stress with a maximum value of-218 MPa on the sample surface,bust also transfer the crack source to the inside of the sample.And the crack growth rate at the shocked region is significantly retarded by LSP.The validity of utilizing LSP to improve the fatigue resistance of 304 stainless steel can be verified according to the fatigue crack growth rate curves.
引文
[1]Luo K Y,Zhou Y,Lu J Z,et al.Influence of laser shock peening on microstructure and property of cladding layer of 316Lstainless steel[J].Chinese Journal of Lasers,2017,44(4):0402005.罗开玉,周阳,鲁金忠,等.激光冲击强化对316L不锈钢熔覆层微观结构和性能的影响[J].中国激光,2017,44(4):0402005.
    [2]Yang X W,Zhou J Z,Sheng J,et al.Microstructure evolution and surface strengthening mechanism of TC6titanium alloy by laser peening[J].Acta Optica Sinica,2017,37(9):0914001.杨祥伟,周建忠,盛杰,等.TC6钛合金激光喷丸组织演变与表面强化机理[J].光学学报,2017,37(9):0914001.
    [3]Zhu R,Zhang Y K,Sun G F,et al.Numerical simulation of residual stress fields in threedimensional flattened laser shocking of 2024aluminum alloy[J].Chinese Journal of Lasers,2017,44(8):0802007.朱然,张永康,孙桂芳,等.三维平顶光束激光冲击2024铝合金的残余应力场数值模拟[J].中国激光,2017,44(8):0802007.
    [4]Li X,He W F,Nie X F,et al.Regularity of residual stress distribution in titanium alloys induced by laser shock peening with different energy spatial distributions[J].Laser&Optoelectronics Progress,2018,55(6):061402.李翔,何卫锋,聂祥樊,等.不同能量空间分布激光冲击钛合金残余应力的分布规律[J].激光与光电子学进展,2018,55(6):061402.
    [5]Zhang X Q,Li H,Huang Z L,et al.Numerical simulation of residual stress induced in 7075aluminum alloy by repeated high-power laser pulses[J].Chinese Journal of Lasers,2015,42(12):1203002.张兴权,李欢,黄志来,等.7075铝合金激光多点冲击诱导残余应力的数值模拟[J].中国激光,2015,42(12):1203002.
    [6]King A,Steuwer A,Woodward C,et al.Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J].Materials Science and Engineering A,2006,435/436:12-18.
    [7]Scherpereel X,Peyre P,Fabbro R,et al.Modifications of mechanical and electrochemical properties of stainless surfaces by laser shock processing[C].Proceedings of SPIE,1997,3097:546-557.
    [8]Hammersley G,Hackel L A,Harris F.Surface prestressing to improve fatigue strength of components by laser shot peening[J].Optics and Lasers in Engineering,2000,34(4/5/6):327-337.
    [9]Zhang X Q,Li H,Yu X L,et al.Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate[J].Materials&Design,2015,65:425-431.
    [10]Wu J J,Zhao J B,Qiao H C,et al.The application status and development of laser shock processing[J].Opto-Electronic Engineering,2018,45(2):170690.吴嘉俊,赵吉宾,乔红超,等.激光冲击强化技术的应用现状与发展[J].光电工程,2018,45(2):170690.
    [11]Luo M,Luo K Y,Wang Q W,et al.Numerical simulation of laser shock peening on residual stress field of 7075-T6aluminum alloy welding[J].Acta Optica Sinica,2014,34(4):0414003.罗密,罗开玉,王庆伟,等.激光冲击7075-T6铝合金焊缝的残余应力场数值模拟[J].光学学报,2014,34(4):0414003.
    [12]Zhang L,Luo K Y,Lu J Z,et al.Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304stainless steel joint[J].Materials Science and Engineering A,2011,528(13/14):4652-4657.
    [13]Luo K Y,Lu J Z,Zhang Y K,et al.Effects of laser shock processing on mechanical properties and microstructure of ANSI 304austenitic stainless steel[J].Materials Science and Engineering A,2011,528(13/14):4783-4788.
    [14]Luo K Y,Yao H X,Dai F Z,et al.Surface textural features and its formation process of AISI 304stainless steel subjected to massive LSP impacts[J].Optics and Lasers in Engineering,2014,55:136-142.
    [15]Kong D J,Zhou C Z,Wu Y Z.Mechanism on residual stress of 304stainless steel by laser shock processing[J].Infrared and Laser Engineering,2010,39(4):736-740.孔德军,周朝政,吴永忠.304不锈钢激光冲击处理后的残余应力产生机理[J].红外与激光工程,2010,39(4):736-740.
    [16]Liu Y X,Wang X,Wu X Q,et al.Surface morphology and deformation mechanism of 304stainless steel treated by laser shock peening[J].Chinese Journal of Lasers,2013,40(1):0103004.柳沅汛,王曦,吴先前,等.激光冲击处理304不锈钢表面的形貌特征及其机理分析[J].中国激光,2013,40(1):0103004.
    [17]Zhong J S,Lu J Z,Luo K Y,et al.Influence of laser shock processing on tensile properties and tribological behaviors of AISI304stainless steel[J].Chinese Journal of Lasers,2013,40(5):0503002.钟金杉,鲁金忠,罗开玉,等.激光冲击对AISI304不锈钢拉伸性能和摩擦磨损性能的影响[J].中国激光,2013,40(5):0503002.
    [18]Li Y Q,Wang X D,Song F L,et al.Study on microstructure and performances of 304stainless steel treated by laser shock processing[J].Infrared and Laser Engineering,2016,45(10):1006005.李玉琴,王学德,宋飞龙,等.激光冲击304不锈钢微观组织和性能研究[J].红外与激光工程,2016,45(10):1006005.
    [19]Mo'cko W,Radziejewska J,Sarzyński A,et al.Analysis of the plastic deformation of AISI 304steel induced by the nanosecond laser pulse[J].Optics&Laser Technology,2017,90:165-173.
    [20]Sun R J,Zhu Y,Guo W,et al.Effect of laser shock processing on surface morphology and residual stress field of TC17titanium alloy by FEM method[J].Journal of Plasticity Engineering,2017,24(1):187-193.孙汝剑,朱颖,郭伟,等.激光冲击强化对TC17表面形貌及残余应力场影响的有限元数值模拟研究[J].塑性工程学报,2017,24(1):187-193.
    [21]Azzam D,Menzemer C C,Srivatsan T S.The fracture behavior of an Al-Mg-Si alloy during cyclic fatigue[J].Materials Science and Engineering A,2010,527(20):5341-5345.
    [22]Zhang X Q,Chen L S,Li S Z,et al.Investigation of the fatigue life of pre-and post-drilling hole in dogbone specimen subjected to laser shot peening[J].Materials&Design,2015,88:106-114.
    [23]Srivatsan T S,Kolar D,Magnusen P.The cyclic fatigue and final fracture behavior of aluminum alloy2524[J].Materials&Design,2002,23(2):129-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700