激光微加工技术制备浸润性可控聚四氟乙烯超疏水表面
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication of Polytetrafluoroethylene Superhydrophobic Surface with Controllable Wettability by Laser Micromaching Technology
  • 作者:占彦龙 ; 李文 ; 李宏 ; 胡良云
  • 英文作者:Yanlong Zhan;Wen Li;Hong Li;Liangyun Hu;School of Physics and Electronic Science,Hubei Normal University;Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation,Hubei Polytechnic University;
  • 关键词:聚四氟乙烯 ; CO2激光微加工 ; 超疏水表面 ; 各向异性 ; 各向同性 ; 浸润性
  • 英文关键词:polytetrafluoroethylene;;CO2 laser micromaching;;superhydrophobic surface;;anisotropic;;isotropic;;wettability
  • 中文刊名:GFZC
  • 英文刊名:Polymer Materials Science & Engineering
  • 机构:湖北师范大学物理与电子科学学院;湖北理工学院湖北省矿区环境污染控制与修复重点实验室;
  • 出版日期:2018-05-03 13:42
  • 出版单位:高分子材料科学与工程
  • 年:2018
  • 期:v.34
  • 基金:国家自然科学基金资助项目(51272082);国家自然科学基金青年基金资助项目(21603070)
  • 语种:中文;
  • 页:GFZC201804025
  • 页数:6
  • CN:04
  • ISSN:51-1293/O6
  • 分类号:151-155+162
摘要
使用CO_2激光器对聚四氟乙烯(PTFE)表面进行微加工,通过设计需要加工的图案,对加工间距、功率和加工次数等参数的控制,能获得浸润性可控的超疏水表面。扫描电子显微镜和接触角测量用于表征表面形貌结构和润湿性。研究了激光不同加工间距、不同加工功率及不同加工次数对表面浸润性和表面形貌的影响。结果表明,制备的超疏水表面各向异性程度随着条纹间距的增大而增大,使用不同的功率加工5次可实现相同的各向同性结构,相同条件下加工4次可以实现各向异性向各向同性的转变。CO_2激光微加工技术可用于大规模加工制备超疏水表面,进而用于微流控器件、定向集水及减阻、实验室芯片系统等领域。
        The superhydrophobic surface with controllable wettability was fabricated by CO_2 laser micromaching polytetrafluoroethylene(PTFE)through designing pattern needed to be processed and controlling the parameters of processing spacing,power and number of times.The structure and wettability of the surface were characterized by scanning electron microscope(SEM)and contact angle measuring instrument.The effects of different stripes spacing,processing power and processing number of times on surface wettability and morphology were studied.The experimental results show that the degree of anisotropy of as-prepared superhydrophobic surface increases with the increase of stripe spacing,the similar isotropic structure can be achieved by processing five times at different processing power,processing four times can achieve a transformation from anisotropy to isotropy under the same conditions.CO_2 laser micromaching technology can be used for large-scale preparation of superhydrophobic surface for microfluidic devices,directional water harvesting and drag-reduction,lab-on-chips system and other fields.
引文
[1]Zhang Y L,Xia H,Kim E,et al.Recent developments in superhydrophobic surfaces with unique structural and functional properties[J].Soft Matter,2012,8:11217-11231.
    [2]Sun T,Qing G.Biomimetic smart interface materials for biological applications[J].Adv.Mater.,2011,23:57-77.
    [3]李静,易玲敏,王明乾,等.静电纺丝法制备超疏水氟硅改性纳米SiO2/PET共混膜[J].高分子材料科学与工程,2016,32(12):115-120.Li J,Yi L M,Wang M Q,et al.Fabrication superhydrophobic films of fluorosilicone-modified SiO2/PET by electrospinning[J].Polymer Materials Science&Engineering,2016,32(12):115-120.
    [4]Wang Y,Wang W,Zhong L,et al.Superhydrophobic surface on pure magnesium substrate by wet chemical method[J].Appl.Surf.Sci.,2010,256:3837-3840.
    [5]Lu S,Chen Y,Xu W,et al.Controlled growth of superhydrophobic films by sol–gel method on aluminum substrate[J].Appl.Surf.Sci.,2010,256:6072-6075.
    [6]Xia D,Brueck S R.Strongly anisotropic wetting on one-dimensional nanopatterned surfaces[J].Nano Lett.,2008,8:2819-2824.
    [7]Jagdheesh R.Fabrication of a superhydrophobic Al2O3surface using picosecond laser pulses[J].Langmuir,2014,30:12067-12073.
    [8]Wang Z B,Hong M H,Lu Y F,et al.Femtosecond laser ablation of polytetrafluoroethylene(Teflon)in ambient air[J].J.Appl.Phys.,2003,93:6375-6380.
    [9]Wu D,Wang J N,Wu S Z,et al.Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J].Adv.Funct.Mater.,2011,21:2927-2932.
    [10]Falah Toosi S,Moradi S,Kamal S,et al.Superhydrophobic laser ablated PTFE substrates[J].Appl.Surf.Sci.,2015,349:715-723.
    [11]黄宗明,周明,李琛,等.飞秒激光对聚四氟乙烯表面的影响[J].功能材料,2010,41(12):2163-2165.Huang Z M,Zhou M,Li C,et al.Femtosecond laser on the surface of PTFE[J].Journal of Functional Materials,2010,41(12):2163-2165.
    [12]Wenzel R N.Resistance of solid surfaces to wetting by water[J].Ind.Eng.Chem.,1936,28:988-994.
    [13]Cassie A B D.Contact angles[J].Discuss.Faraday Soc.,1948,3:11-16.
    [14]Wu S Z,Wu D,Yao J,et al.One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting[J].Langmuir,2010,26:12012-12016.
    [15]Zheng Y,Bai H,Huang Z,et al.Directional water collection on wetted spider silk[J].Nature,2010,463:640-643.
    [16]Zhao B,Moore J S,Beebe D J.Surface-directed liquid flow inside microchannels[J].Science,2001,291:1023-1026.
    [17]Jung Y C,Bhushan B.Biomimetic structures for fluid drag reduction in laminar and turbulent flows[J].J.Phys.Conden.Matter,2010,22,DOI:10.1088/0953-8984/22/3/035104.
    [18]Yong J,Yang Q,Chen F,et al.A simple way to achieve superhydrophobicity,controllable water adhesion,anisotropic sliding,and anisotropic wetting based on femtosecond-laser-induced linepatterned surfaces[J].J.Mater.Chem.A,2014,2:5499.
    [19]Mele E,Girardo S,Pisignano D.Strelitzia reginae leaf as a natural template for anisotropic wetting and superhydrophobicity[J].Langmuir,2012,28:5312-5317.
    [20]Bliznyuk O,Jansen H P,Kooij E S,et al.Initial spreading kinetics of high-viscosity droplets on anisotropic surfaces[J].Langmuir,2010,26:6328-6334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700