飞秒激光微加工制备金属线栅太赫兹偏振片
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metal Wire Grid Terahertz Polarizer Fabricated by Femtosecond Laser Micro-Machining
  • 作者:陈燕青 ; 高炳攀 ; 林炎章 ; 居学尉 ; 王杰 ; 王向峰
  • 英文作者:Chen Yanqing;Gao Bingpan;Lin Yanzhang;Ju Xuewei;Wang Jie;Wang Xiangfeng;School of Mechanical Engineering and Automation,Fuzhou University;
  • 关键词:激光技术 ; 太赫兹(THz) ; 偏振片 ; 飞秒激光微加工 ; 时域有限差分(FDTD)法
  • 英文关键词:laser technique;;terahertz;;polarizer;;femtosecond laser micro-machining;;finite-difference time-domain(FDTD)method
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:福州大学机械工程及自动化学院;
  • 出版日期:2018-04-11 15:00
  • 出版单位:中国激光
  • 年:2018
  • 期:v.45;No.500
  • 基金:福建省自然科学基金(2015J01245);; 国家自然科学基金(51675103)
  • 语种:中文;
  • 页:JJZZ201808014
  • 页数:6
  • CN:08
  • ISSN:31-1339/TN
  • 分类号:93-98
摘要
基于时域有限差分(FDTD)法,对金属线栅结构的太赫兹(THz)偏振特性进行了仿真分析,研究了占空比和金属层厚度对偏振特性的影响,发现随着厚度的增加,0.1~10THz范围内出现了周期性高透射现象。基于飞秒激光微加工技术制备了周期性金属线栅太赫兹偏振片,利用时域太赫兹光谱系统进行了实验测试,实验结果与仿真结果相吻合,偏振片的消光比在40dB~45dB范围内,偏振度为1,显示了良好的偏振特性。
        Based on the finite-difference time-domain(FDTD)method,the terahertz(THz)polarization characteristics of a metal wire grid structure are simulated and analyzed.The influences of duty ratio and metal layer thickness on the polarization characteristics are investigated.It is found that the periodic high transmission phenomenon in the range of 0.1-10 THz occurs with the increase of the metal layer thickness.The metal wire grid THz polarizer is fabricated by the femtosecond laser micro-machining technique,which is tested by the time-domain terahertz spectroscopy system.The experimental results are consistent with the simulation ones.The extinction ratio of the polarizer is in the range of 40 dB-45 dB and the polarization degree is 1,which indicates that the polarizer possesses a good polarization characteristic.
引文
[1]Fischer B M,Helm H,Jepsen P U.Chemical recognition with broadband THz spectroscopy[J].Proceedings of the IEEE,2007,95(8):1592-1604.
    [2]Liu H B,Plopper G,Earley S,et al.Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy[J].Biosensors&Bioelectronics,2007,22(6):1075-1080.
    [3]Mandehgar M,Grischkowsky D.Dispersion compensation of the THz communication channels in the atmosphere[J].IEEE Photonics Technology Letters,2015,27(22):2387-2390.
    [4]Wang J L,Zhang B Z,Duan J P,et al.Flexible dual-stopband terahertz metamaterial filter[J].Acta Optica Sinica,2017,37(10):1016001.王俊林,张斌珍,段俊萍,等.柔性双阻带太赫兹超材料滤波器[J].光学学报,2017,37(10):1016001.
    [5]Shang H Y,Huo L,Wu Y P,et al.Scanning frequency coherent imaging system for single polarization semiconductor optical amplifier[J].Chinese Journal of Lasers,2014,41(11):1102002.尚怀嬴,霍力,吴远鹏,等.单偏振半导体光放大器扫频光相干成像系统[J].中国激光,2014,41(11):1102002.
    [6]Liu Y,Zhao G Z,Shen Y C.Polarization imaging detection based on the continuous terahertz wave[J].Chinese Journal of Lasers,2016,43(1):0111001.刘影,赵国忠,申彦春.连续太赫兹波偏振成像检测[J].中国激光,2016,43(1):0111001.
    [7]Piesiewicz R,Jacob M,Koch M,et al.Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments[J].IEEE Journal of Selected Topics in Quantum Electronics,2008,14(2):421-430.
    [8]Moallem M,Sarabandi K.Miniaturized-element frequency selective surfaces for millimeter wave to terahertz applications[J].IEEE Transactions on Terahertz Science and Technology,2012,2(3):333-339.
    [9]Lin X W.Research on liquid crystal photonic devices based on grating structure[D].Nanjing:Nanjing University,2013.林晓雯.结合光栅结构的液晶光子学器件研究[D].南京:南京大学,2013.
    [10]Zhang J,Fang Y,Wu L Y,et al.Liquid crystal beam deflection technology[J].Chinese Journal of Lasers,2010,37(2):325-334.张健,方运,吴丽莹,等.液晶光束偏转技术[J].中国激光,2010,37(2):325-334.
    [11]Mao H Y,Xia L P,Rao X H,et al.A terahertz polarizer based on multilayer metal grating filled in polyimide film[J].IEEE Photonics Journal,2017,8(1):1-6.
    [12]Li F F,Li D,Shu S W,et al.Polarization terahertz wave transmission through wire gratings[J].Journal of Infrared and Millimeter Waves,2010,29(6):452-456.栗芳芳,李栋,舒时伟,等.金属线栅结构中太赫兹波偏振特性的研究[J].红外与毫米波学报,2010,29(6):452-456.
    [13]Sun L,LüZ H,Wu W,et al.Double-grating polarizer for terahertz radiation with high extinction ratio[J].Applied Optics,2010,49(11):2066.
    [14]Lu B,Wang H T,Shen J,et al.A high extinction ratio THz polarizer fabricated by double bilayer wire grid structure[J].AIP Advances,2016,6(2):1127.
    [15]Costley A E,Hursey K H,Neill G F,etal.Freestanding fine-wire grids:Their manufacture,performance,and use at millimeter and submillimeter wavelengths[J].Journal of the Optical Society of America,1977,67(7):979-981.
    [16]Wang W T,Liu J J,Li X J,et al.Direct fabrication of terahertz polarizer and filter by laser inducing and non-electrolytic plating with copper[J].Acta Optica Sinica,2012,32(12):1231002.王文涛,刘建军,李向军,等.激光诱导和化学镀铜制备太赫兹偏振器和滤波器[J].光学学报,2012,32(12):1231002.
    [17]Chen M,Fan F,Yang L,et al.Mechanically tunable terahertz plasmonic waveguide filter[J].Chinese Journal of Lasers,2016,43(4):0411001.陈猛,范飞,杨磊,等.机械可调谐太赫兹等离子体波导滤波器[J].中国激光,2016,43(4):0411001.
    [18]Mao H Y,Xu H M,Xia L P,et al.A large area and low loss thin-film terahertz polarizer[J].Acta Photonica Sinica,2015,44(9):118-122.毛洪艳,许红梅,夏良平,等.大面积低损耗薄膜衬底太赫兹偏振片[J].光子学报,2015,44(9):118-122.
    [19]Ren L,Pint C L,Booshehri L G,et al.Carbon nanotube terahertz polarizer[J].Nano Letters,2009,9(7):2610-2613.
    [20]Ren L,Pint C L,Arikawa T,et al.Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks[J].Nano Letters,2012,12(2):787-790.
    [21]Zubair A,Tsentalovich D E,Young C C,et al.Carbon nanotube fiber terahertz polarizer[J].Applied Physics Letters,2016,108(14):141107.
    [22]Kyoung J,Jang E Y,Lima M D,et al.A reelwound carbon nanotube polarizer for terahertz frequencies[J].Nano Letters,2011,11(10):4227-4231.
    [23]Komlenok M S,Volodkin B O,Knyazev B A,et al.Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation[J].Quantum Electronics,2015,45(10):933-936.
    [24]Lin Y Z,Yao H Z,Ju X W,et al.Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining[J].Optics Express,2017,25(21):25125-25134.
    [25]Xing Q R,Li S X,Tian Z,et al.Enhanced zeroorder transmission of terahertz radiation pulses through very deep metallic gratings with subwavelength slits[J].Applied Physics Letters,2006,89(4):041107.
    [26]Bavil M A,Sun X D,Huang F.Classifying the transmission resonances of a subwavelength aperture within a thin metallic film by breaking the symmetry[J].Physics of Condensed Matter,2012,407(14):2768-2772
    [27]Popov E,Enoch S,Tayeb G,et al.Enhanced transmission due to nonplasmon resonances in oneand two-dimensional gratings[J].Applied Optics,2004,43(5):999-1008.
    [28]Gao B P,Lin Y Z,Chen Y,et al.Preparation of non-substrate THz bandpass filter by femtosecond laser micromachining[J].Laser&Optoelectronics Progress,2018,55(2):021415.高炳攀,林炎章,陈盈,等.飞秒激光微加工制备无衬底太赫兹带通滤波器[J].激光与光电子学进展,2018,55(2):021415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700