准分子激光微加工应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of application of excimer laser micromachining
  • 作者:何立文 ; 方晓东
  • 英文作者:HE Liwen;FANG Xiaodong;School of Electronic Science and Applied Physics, Hefei University of Technology;Anhui Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;
  • 关键词:激光技术 ; 准分子激光微加工 ; 集成芯片3D封装 ; 微机电系统材料微加工
  • 英文关键词:laser technique;;excimer laser micromachining;;integrated chip 3D package;;micro-electromechanical system material micromachining
  • 中文刊名:LDXU
  • 英文刊名:Chinese Journal of Quantum Electronics
  • 机构:合肥工业大学电子科学与应用物理学院;中国科学院安徽光学精密机械研究所安徽省光子器件与材料重点实验室;
  • 出版日期:2018-11-15
  • 出版单位:量子电子学报
  • 年:2018
  • 期:v.35;No.185
  • 语种:中文;
  • 页:LDXU201806001
  • 页数:8
  • CN:06
  • ISSN:34-1163/TN
  • 分类号:3-10
摘要
准分子激光加工技术基于光化学机制.准分子激光具有波长短、重复频率高、单脉冲能量大、输出光斑大且能量分布均匀等特点,在精准和高效微加工领域有着独特的优势.准分子激光微加工可以减小热影响区(Heat affected zone, HAZ),有效避免产生裂纹等缺陷,在材料精细加工领域有很好的应用前景。介绍了准分子激光微加工的研究进展,及准分子激光微加工应用于微电子集成电路封装、微机电系统(Micro-electro-mechanical system, MEMS)材料加工和生物医疗等领域的研究结果,总结了准分子激光微加工技术的发展趋势。
        Excimer laser machining technology is based on photochemical mechanism. Excimer laser has the characteristics of short wavelength, high repetition rate, high single pulse energy, large output spot and uniform energy distribution. It has unique advantages in the field of precision and high efficiency microprocessing. Excimer laser micromachining can reduce the heat affected zone(HAZ) and effectively avoid cracks and other defects. It has a promising application prospect in the field of fine machining of materials. Research progress of excimer laser micromachining, and the application of excimer laser micromachining in the field of microelectronics integrated circuit packaging, micro-electro-mechanical system(MEMS) material processing and biological medicine are introduced. The development trend of excimer laser micromachining technology is summarized.
引文
[1] Basov N G, Danilychev V A, Popov Y M, et al. Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam[J]. JETP Letters,1970,12(10):329-331.
    [2] Yu Yingshan, You Libing, Liang Xu, et al. Progress of excimer lasers technology(invited paper)[J]. Chinese Journal of Lasera(中国激光),2010, 37(9):2253-2270(in Chinese).
    [3] Sukumaran V, Kumar G, Ramachandran K, et al. Design, fabrication, and characterization of ultrathin 3D glass interposers with through-package-vias at same pitch as TSVs in silicon[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2014, 4(5):786-795.
    [4] Behrmann G P, Duignan M T. Excimer laser micromachining for rapid fabrication of diffractive optical elements[J]. Applied Optics, 1997, 36(20):4666-4674.
    [5] Eugénio S, Sivakumar M, Vilar R, et al. Characterisation of dentin surfaces processed with KrF excimer laser radiation[J]. Biomaterrials, 2005, 26(33):6780-6787.
    [6] Choi K H, Meijer J, Masuzawa T, et al. Excimer laser micromachining for 3D microstructure[J]. Journal of Materials Processing Technology, 2004, 149(1):561-566.
    [7] Sugioka K, Akane T, Obata K, et al. Multiwavelength excitation processing using F_2 and KrF excimer lasers for precision microfabrication of hard materials[J]. Applied Surface Science, 2002, 197:814-821.
    [8] Delmdahl R, Brune J, Fechner B, et al. Enabling laser applications in microelectronics manufacturing[J]. Applied Physics A, 2016, 122(2):116.
    [9] Delmdahl R, TapiéJ L. Excimer lasers drive large-area microprocessing[J]. Applied Surface Science, 2012, 258(23):9123-9127.
    [10] Shaheen M,Gagnon J,Fryer B. Excimer laser ablation of aluminum:Influence of spot size on ablation rate[J].Laser. Physics, 2016, 26(11):116102.
    [11] Suzuki Y, Brune J, Senczuk R, et al. Demonstration of 20μm pitch micro-vias by excimer laser ablation in ultra-thin dry-film polymer dielectrics for multi-layer RDL on glass interposers[C]. IEEE Electronic Components and Technology Conference(ECTC), 2015:922-927.
    [12] Suzuki Y,Hichri H,Wei F,et al. Embedded trench redistribution layers at 2~5μm width and space by excimer laser ablation and surface planer processes for 20~40μm I/O pitch interposers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(6):838-845.
    [13] Sato Y, Sitaraman S, Sukumaran V, et al. Ultrarminiaturized and surface-mountable glass-based 3D IPAC packages for RF modules[C]. IEEE Electronic Components and Technology Conference(ECTC), 2013:1656-1661.
    [14] Delmdahl R, Paetzel R. Laser drilling of high-density through glass vias(TGVs)for 2.5D and 3D packaging[J].J. Microelectron. Packag. Soc, 2014, 21(2):53-57.
    [15] Liu K W, NiCkolov Z, Oh J, et al. KrF excimer laser micromachining of MEMS materials:Characterization and applications[J]. Journal of Micromechanics and Microengineering, 2011, 22(1):015012.
    [16] Liu K W, Kim Y, Noh H M, et al. ArF excimer laser micromachining of MEMS materials:Characterization and applications[J]. Journal of Micro and Nano-Manufacturing, 2014, 2(2):021006.
    [17] Anuar A, Wahab Y, Fazmir H, et al. KrF excimer laser micromachining of silicon for micro-cantilever applications[C].Proceedings of International Electronic Conference on Sensors and Applications, 2014:1-6.
    [18] Saadon S, Wahab Y, bin Zahid Jamal Z A, et al. MEMS structures characterization on PMMA layer using KrF excimer laser micromachining[J]. Journal of Optoelectronics and Advanced Materials, 2015, 17(9-10):1265-1271.
    [19] Topper M, Hauck K, Schima M, et al, A sub-4μm via technology of thinfilm polymers using scanning laser ablation[C]. IEEE Electronic Components and Technology Conference(ECTC), 2015:388-395.
    [20] Huang Y X, Lu J Y, Huang J X. KrF excimer laser precision machining of hard and brittle ceramic biomaterials[J]. Biomedical Materials, 2014, 9(3):035009.
    [21] Kulkova J, Moritz N, Huhtinen H, et al. Bioactive glass surface for fiber reinforced composite implants via surface etching by excimer laser[J]. Medical Engineering and Physics, 2016, 38(7):664-670.
    [22] Li J, Ananthasuresh G K. A quality study on the excimer laser micromachining of electro-thermal-compliant micro devices[J]. Journal of Micromechanics and Microengineering, 2001, 11(1):38.
    [23] Desbiens J P, Masson P. ArF excimer laser micromachining of Pyrex, SiC and PZT for rapid prototyping of MEMS components[J]. Sensors and Actuators A:Physical, 2007, 136(2):554-563.
    [24] Keiper B, Exner H, Loschner U, et al. Drilling of glass by excimer laser mask projection technique[J]. Journal of Laser Applications, 2000, 12(5):189-193.
    [25] Yang Guishuan, Chen Tao, Chen Hong. Crack-free silicon glass surface micro-grooves etched by 248 nm excimer lasers[J]. Chinese Journal of Lasers(中国激光),2017, 44(9):0902004(in Chinese).
    [26] Omori N, Inoue M. Excimer laser ablation of inorganic materials[J]. Applied Surface Science, 1992, 54:232-236.
    [27] Ferna E, Gil F J, Ginebra M P, et al. Calcium phosphate bone cements for clinical applications. Part I:Solution chemistry[J], Journal of Materials Science:Materials in Medicine, 1999, 10(3):169-176.
    [28] Liu Bing, Xiao Guiyong, Lu Yupeng. Preparation and cytocompatibility of brushitehydroxyapatite coating on Ti by chemical conversion[J].Acta Materiae Composinae Sinica(复合材料学报),2017,(11):2516-2522(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700