面向生物医学临床应用的激光微加工功能表面
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Engineered Functional Surfaces by Laser Microprocessing for Biomedical Applications
  • 作者:胡国庆 ; 管凯 ; 卢立斌 ; 张佳茹 ; 聂璐 ; 管迎春
  • 英文作者:Guoqing Hu;Kai Guan;Libin Lu;Jiaru Zhang;Nie Lu;Yingchun Guan;School of Mechanical Engineering and Automation,Beihang University;Hefei Innovation Research Institute,Beihang University;Department of Oncology,Center of Excellence,BOE Hefei Digital Hospital Co.,Ltd.;Beijing Long March Space Vehicle Research Institute,First Academy of the China Aerospace Corporation;National Engineering Laboratory of Additive Manufacturing for Large Metallic Components,Beihang University;
  • 关键词:激光微加工 ; 功能表面 ; 金属合金 ; 生物相容性 ; 表面增强拉曼散射
  • 英文关键词:Laser microprocessing;;Functional surface;;Metallic alloy;;Niocompatibility;;SERS
  • 中文刊名:GOCH
  • 英文刊名:工程(英文)
  • 机构:School of Mechanical Engineering and Automation,Beihang University;Hefei Innovation Research Institute,Beihang University;Department of Oncology,Center of Excellence,BOE Hefei Digital Hospital Co.,Ltd.;Beijing Long March Space Vehicle Research Institute,First Academy of the China Aerospace Corporation;National Engineering Laboratory of Additive Manufacturing for Large Metallic Components,Beihang University;
  • 出版日期:2018-12-15
  • 出版单位:Engineering
  • 年:2018
  • 期:v.4
  • 基金:国家重点研发计划(2018YFB1107400);; 国家重点基础研究发展计划(2015CB059900);; 国家自然科学基金(51705013);; 北京自然科学基金(3162019和J170002)的支持~~
  • 语种:中文;
  • 页:GOCH201806013
  • 页数:19
  • CN:06
  • ISSN:10-1244/N
  • 分类号:172-190
摘要
金属医用材料以其高强度、强抗断性、优良的导电性和良好的生物相容性等特点,在医疗器械中日益得到广泛应用。但金属医用材料表面生物性能的不足在很大程度上限制了其进一步的应用。激光微加工是一种增强材料表面性能的先进技术,本文系统验证、展示激光微加工医用金属生物材料镁合金和钛合金的可行性,阐述其在细胞黏附和液体活检的应用前景。本文研究激光与材料的相互作用、材料微结构演化和表面性能,分析相关细胞行为和表面增强拉曼散射效应。实验结果表明,细胞在激光微加工表面黏附性能好,并可沿预先设计结构方向生长。此外,激光功能表面可显著增强拉曼信号,增强因子可达6×10~3以上。
        Metallic biomaterials are increasingly being used in various medical applications due to their high strength, fracture resistance, good electrical conductivity, and biocompatibility. However, their practical applications have been largely limited due to poor surface performance. Laser microprocessing is an advanced method of enhancing the surface-related properties of biomaterials. This work demonstrates the capability of laser microprocessing for biomedical metallic materials including magnesium and titanium alloys, with potential applications in cell adhesion and liquid biopsy. We investigate laser-material interaction, microstructural evolution, and surface performance, and analyze cell behavior and the surface-enhanced Raman scattering(SERS) effect. Furthermore, we explore a theoretical study on the laser microprocessing of metallic alloys that shows interesting results with potential applications. The results show that cells exhibit good adhesion behavior at the surface of the laser-treated surface, with a preferential direction based on the textured structure. A significant SERS enhancement of 6×10~3 can be obtained at the laser-textured surface during Raman measurement.
引文
[1]Pan F,Gao S,Chen C,Song C,Zeng F.Recent progress in resistive random access memories:materials,switching mechanisms,and performance.Mater Sci Eng Rep 2014;83:1-59.
    [2]Xiong Y,Li H,Wang P,Liu P,Yan Y.Improved cell adhesion of poly(amino acid)surface by cyclic phosphonate modification for bone tissue engineering.J Appl Polym Sci 2018;135(21):46226.
    [3]Escobar Ivirico JL,Bhattacharjee M,Kuyinu E,Nair LS,Laurencin CT.Regenerative engineering for knee osteoarthritis treatment:biomaterials and cell-based technologies.Engineering 2017;3(1):16-27.
    [4]Guan Y,Zhou W,Zheng H.Effect of laser surface melting on corrosion behaviour of AZ91D Mg alloy in simulated-modified body fluid.J Appl Electrochem 2009;39(9):1457-64.
    [5]Korhonen E,Riikonen J,Xu W,Lehto V,Kauppinen A.Cytotoxicity of mesoporous silicon microparticles with different surface modifications on ARPE-19 cells.Acta Ophthalmol 2014;92(S253):3257.
    [6]Gupta AK,Gupta M.Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials 2005;26(18):3995-4021.
    [7]Lo Celso C.Revealing the inner workings of human HSC adhesion.Blood2017;129(8):921-2.
    [8]Diener A,Nebe B,Lüthen F,Becker P,Beck U,Neumann HG,et al.Control of focal adhesion dynamics by material surface characteristics.Biomaterials2005;26(4):383-92.
    [9]Won JE,Yun YR,Jang JH,Yang SH,Kim JH,Chrzanowski W,et al.Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering.Biomaterials 2015;56:46-57.
    [10]Lee JY,Shah SS,Zimmer CC,Liu GY,Revzin A.Use of photolithography to encode cell adhesive domains into protein microarrays.Langmuir 2008;24(5):2232-9.
    [11]Javaherian S,O’Donnell KA,McGuigan AP.A fast and accessible methodology for micro-patterning cells on standard culture substrates using ParafilmTMinserts.PLoS One 2011;6(6):e20909.
    [12]Ross AM,Jiang Z,Bastmeyer M,Lahann J.Physical aspects of cell culture substrates:topography,roughness,and elasticity.Small 2012;8(3):336-55.
    [13]Martínez-Calderon M,Manso-Silván M,Rodríguez A,Gómez-Aranzadi M,García-Ruiz JP,Olaizola SM,et al.Surface micro-and nano-texturing of stainless steel by femtosecond laser for the control of cell migration.Sci Rep2016;6:36296.
    [14]Cunha A,Zouani OF,Plawinski L,Botelho do Rego AM,Almeida A,Vilar R,et al.Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces.Nanomedicine 2015;10(5):725-39.
    [15]Dumas V,Guignandon A,Vico L,Mauclair C,Zapata X,Linossier MT,et al.Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment.Biomed Mater 2015;10(5):055002.
    [16]Manakari V,Parande G,Gupta M.Selective laser melting of magnesium and magnesium alloy powders:a review.Metals(Basel)2017;7(1):2.
    [17]Willbold E,Weizbauer A,Loos A,Seitz JM,Angrisani N,Windhagen H,et al.Magnesium alloys:a stony pathway from intensive research to clinical reality.Different test methods and approval-related considerations.J Biomed Mater Res A 2017;105(1):329-47.
    [18]Guan YC,Zhou W,Li ZL,Zheng HY.Laser-induced microstructural development and phase evolution in magnesium alloy.J Alloys Compd2014;582:491-5.
    [19]Guan YC,Zhou W,Li ZL,Zheng HY.Influence of overlapping tracks on microstructure evolution and corrosion behavior in laser-melt magnesium alloy.Mater Design 2013;52:452-8.
    [20]Coy AE,Viejo F,Garcia-Garcia FJ,Liu Z,Skeldon P,Thompson GE.Effect of excimer laser surface melting on the microstructure and corrosion performance of the die cast AZ91D magnesium alloy.Corros Sci 2010;52(2):387-97.
    [21]Voelker R.Liquid biopsy receives approval.JAMA 2016;316(3):260.
    [22]De Lázaro I,Kostarelos K.Optical diagnostics:nanosensors for liquid biopsies.Nat Biomed Eng 2017;1:0063.
    [23]Diaz Jr LA,Bardelli A.Liquid biopsies:genotyping circulating tumor DNA.J Clin Oncol 2014;32(6):579-86.
    [24]Schrump DS.Circulating tumor DNA:solid data from liquid biopsies.J Thorac Cardiovasc Surg 2017;154(3):1132-3.
    [25]Xu K,Zhang C,Zhou R,Ji R,Hong M.Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering.Opt Express 2016;24(10):10352-8.
    [26]Zhu Z,Yan Z,Zhan P,Wang Z.Large-area surface-enhanced Raman scatteringactive substrates fabricated by femtosecond laser ablation.Sci China Phys Mech Astron 2013;56(9):1806-9.
    [27]Parmar V,Kanaujia PK,Bommali RK,Vijaya Prakash G.Efficient surface enhanced Raman scattering substrates from femtosecond laser based fabrication.Opt Mater 2017;72:86-90.
    [28]Buividas R,Stoddart PR,Juodkazis S.Laser fabricated ripple substrates for surface-enhanced Raman scattering.Ann Phys 2012;524(11):L5-L10.
    [29]Rebollar E,Sanz M,Pérez S,Hernández M,Martín-Fabiani I,Rueda DR,et al.Gold coatings on polymer laser induced periodic surface structures:assessment as substrates for surface-enhanced Raman scattering.Phys Chem Chem Phys 2012;14(45):15699-705.
    [30]Jang Y,Tan Z,Jurey C,Collins B,Badve A,Dong Z,et al.Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant.Mater Sci Eng C 2014;45:45-55.
    [31]Ma C,Peng G,Nie L,Liu H,Guan Y.Laser surface modification of Mg-Gd-Ca alloy for corrosion resistance and biocompatibility enhancement.Appl Surf Sci2018;445:211-6.
    [32]Xiao B,Yang Q,Yang J,Wang W,Xie G,Ma Z.Enhanced mechanical properties of Mg-Gd-Y-Zr casting via friction stir processing.J Alloys Compd 2011;509(6):2879-84.
    [33]Zhang X,Dai J,Yang H,Liu S,He X,Wang Z.Influence of Gd and Ca on microstructure,mechanical and corrosion properties of Mg-Gd-Zn(-Ca)alloys.Mater Technol 2017;32(7):399-408.
    [34]Liu Y,Kang Z,Zhou L,Zhang J,Li Y.Mechanical properties and biocorrosion behaviour of deformed Mg-Gd-Nd-Zn-Zr alloy by equal channel angular pressing.Corros Eng Sci Technol 2016;51(4):256-62.
    [35]Xin Y,Huo K,Tao H,Tang G,Chu P.Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.Acta Biomater 2008;4(6):2008-15.
    [36]Taltavull C,Shi Z,Torres B,Rams J,Atrens A.Influence of the chloride ion concentration on the corrosion of high-purity Mg,ZE41 and AZ91 in buffered Hank’s solution.J Mater Sci Mater Med 2014;25(2):329-45.
    [37]Aghion EE,Arnon A,Atar D,Segal G,inventors;Biomagnesium Systems Ltd.,assignee.Biodegradable magnesium alloys and uses thereof.WIPO Patent patent WO/2007/125532.2007 Nov 8.
    [38]Zheng Y,Gu X,Xi Y,Chai D.In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy.Acta Biomater 2010;6(5):1783-91.
    [39]Mannion PT,Magee J,Coyne E,O’Connor GM,Glynn TJ.The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air.Appl Surf Sci2004;233(1-4):275-87.
    [40]Villa JEL,Santos DP,Poppi RJ.Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis.Mikrochim Acta 2016;183(10):2745-52.
    [41]Harraz FA,Ismail AA,Bouzid H,Al-Sayari SA,Al-Hajry A,Al-Assiri MS.Surfaceenhanced Raman scattering(SERS)-active substrates from silver plated-porous silicon for detection of crystal violet.Appl Surf Sci 2015;331:241-7.
    [42]Domingo C,Resta V,Sanchez-Cortes S,García-Ramos JV,Gonzalo J.Pulsed laser deposited Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy.J Phys Chem C 2007;111(23):8149-52.
    [43]Stiles PL,Dieringer JA,Shah NC,Van Duyne RP.Surface-enhanced Raman spectroscopy.Annu Rev Anal Chem 2008;1(1):601-26.
    [44]Bauch M,Toma K,Toma M,Zhang Q,Dostalek J.Plasmon-enhanced fluorescence biosensors:a review.Plasmonics 2014;9(4):781-99.
    [45]Caldarola M,Albella P,Cortés E,Rahmani M,Roschuk T,Grinblat G,et al.Nonplasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion.Nat Commun 2015;6(1):7915.
    [46]Kelly KL,Coronado E,Zhao L,Schatz GC.The optical properties of metal nanoparticles:the influence of size,shape,and dielectric environment.J Phys Chem B 2003;107(3):668-77.
    [47]Li M,Cushing SK,Wu N.Plasmon-enhanced optical sensors:a review.Analyst2015;140(2):386-406.
    [48]Dong J,Zhang Z,Zheng H,Sun M.Recent progress on plasmon-enhanced fluorescence.Nanophotonics 2015;4(1):472-90.
    [49]Homola J,Piliarik M.Surface plasmon resonance(SPR)sensors.Surface plasmon resonance based sensors.Springer,Berlin Heidelberg 2006;4:45-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700