In元素对Sn-Bi-Zn合金传热储热性能及结构的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of In on the thermal properties and microstructure of Sn-Bi-Zn alloy
  • 作者:程晓敏 ; 王青萌 ; 李元元 ; 喻国铭
  • 英文作者:CHENG Xiaomin;WANG Qingmeng;LI Yuanyuan;YU Guoming;School of Materials Science and Engineering,Wuhan University of Technology;Huanggang Normal University;
  • 关键词:传热材料 ; In元素 ; Sn-Bi-Zn ; 导热系数
  • 英文关键词:heat transfer material;;in addition;;Sn-Bi-Zn;;thermal conductivity
  • 中文刊名:CNKX
  • 英文刊名:Energy Storage Science and Technology
  • 机构:武汉理工大学材料科学与工程学院;黄冈师范学院;
  • 出版日期:2017-07-01
  • 出版单位:储能科学与技术
  • 年:2017
  • 期:v.6;No.30
  • 基金:国家科技支撑计划(2012BAA05B05);; 湖北省科技支撑计划(2005BAA111);; 中央高校基本科研专项资金(WUT:2017Ⅱ23GX)
  • 语种:中文;
  • 页:CNKX201704008
  • 页数:7
  • CN:04
  • ISSN:10-1076/TK
  • 分类号:62-68
摘要
研究了不同含量的In元素对Sn-Bi-Zn共晶合金微观结构和热物性的影响。通过电子探针微观形貌分析(EPMA)、X射线衍射物相分析(XRD)和X射线荧光光谱分析(XRF)对合金的微观结构和物相组成进行了研究,并通过差示扫描量热仪(DSC)、热重分析仪(TG/DTA)、推杆式膨胀计(DIL 402C)和激光闪光法(LFA457)综合分析了合金的各项热物性。结果表明,Sn-Bi-Zn共晶合金的显微组织主要由富Sn相、富Bi相和富Zn相组成,而随着In含量的增加(Sn_(48)Bi_(50)Zn_2)_(100-x)In_x合金会形成InSn4和BiIn金属间化合物和富In相。(Sn_(48)Bi_(50)Zn_2)_(100-x)In_x合金的熔化焓随In含量的增加而增加,相变温度随着In含量的增加而降低。(Sn_(48)Bi_(50)Zn_2)_(100-x)In_x合金的热膨胀系数随着温度的升高而增加,并且保持在13×10~(-6)~15×10~(-6)/℃之间。所有合金的密度和热扩散系数均随In含量的增加而降低,导热系数随In含量的增加而增加。
        The influence of the addition of In on the microstructure and thermal properties of Sn-Bi-Zn eutectic alloy was investigated. The microstructure and phase compositions were investigated by electron probe micro-analysis(EPMA), X-ray diffusion(XRD) and X-ray fluorescence spectroscopy(XRF), and the thermal properties were measured with differential scanning calorimeter(DSC), thermogravimetry(TG/DTA), a pushrod type expansion meter(DIL 402C) and a laser flash analyzer(LFA 457). The results indicated that the microstructure of Sn-Bi-Zn eutectic alloy was mainly composed of Sn-rich phase, Bi-rich phase and Zn-rich phase, but(Sn_(48)Bi_(50)Zn_2)_(100-x)In_x alloys showed InSn4 and BiIn intermetallic compounds and In-rich phases with increasing In content. The melting enthalpies increased with increasing In content, and the phase change temperature decreased with increasing In content in the(Sn_(48)Bi_(50)Zn_2)_(100-x)In_x alloys. The thermal expansion of(Sn_(48)Bi_(50)Zn_2)_(100-x)In_x alloys increased with increasing temperature and was tunable between 13×10~(-6) and 15×10~(-6)/℃by the In addition. The densities and thermal diffusion coefficient of all the alloys decreased with the addition of In, whereas the thermal conductivity increased with increasing In content.
引文
[1]REILLY J,PALTSEV S,FELZER B,et al.Global economic effects of changes in crops,pasture,and forests due to changing climate,carbon dioxide,and ozone[J].Energy Policy,2007,35(11):5370-5383.
    [2]HADJIEVA M M,BOZUKOV M,GUTZOV I.Next generation phase change materials as multifunctional watery suspension for heat transport and heat storage[C]//MRS Proceedings.UK:Cambridge University Press,2009.
    [3]HADJIEVA M,BOZUKOV M,TSACHEVA T.Thermal stability control of microencapsulated salt/graphite composite for thermal storage application[M]//Proceedings of ISES World Congress 2007(Vol.I–Vol.V).Springer Berlin Heidelberg,2008:2698-2702.
    [4]ACEM Z,LOPEZ J,BARRIO E P D.KNO3/Na NO3-graphite materials for thermal energy storage at high temperature:Part I.—Elaboration methods and thermal properties[J].Applied Thermal Engineering,2010,30(13):1580-1585.
    [5]LOPEZ J,ACEM Z,BARRIO E P D.KNO3/Na NO3-graphite materials for thermal energy storage at high temperature:Part II—Phase transition properties[J].Applied Thermal Engineering,2010,30(13):1586-1593.
    [6]PILLONI M,ENNAS G,CABRAS V,et al.Thermal and structural characterization of ultrasonicated Bi Sn alloy in the eutectic composition[J].Journal of Thermal Analysis and Calorimetry,2015,120(3):1543-1551.
    [7]TSAO L C.Suppressing effect of 0.5%nano-Ti O2 addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging[J].Journal of Alloys&Compounds,2011,509:8441-8448.
    [8]WANG S H,CHIN T S,YANG C F,et al.Pb-free solder-alloy based on Sn-Zn-Bi with the addition of germanium[J].Journal of Alloys&Compounds,2010,497(1/2):428-431.
    [9]EL-DALY A A,SWILEM Y,MAKLED M H,et al.Thermal and mechanical properties of Sn-Zn-Bi lead-free solder alloys[J].Journal of Alloys&Compounds,2009,484(1/2):134-142.
    [10]GAIN A K,ZHANG L.Microstructure,thermal analysis and damping properties of Ag and Ni nano-particles doped Sn-8Zn-3Bi solder on OSP-Cu substrate[J].Journal of Alloys and Compounds,2014,617:779-786.
    [11]SHEN J,PU Y,YIN H,et al.Effects of minor Cu and Zn additions on the thermal,microstructure and tensile properties of Sn-Bi-based solder alloys[J].Journal of Alloys&Compounds,2014,614(10):63-70.
    [12]OSóRIO W R,PEIXOTO L C,GARCIA L R,et al.Microstructure and mechanical properties of Sn-Bi,Sn-Ag and Sn-Zn lead-free solder alloys[J].Journal of Alloys&Compounds,2013,572(36):97-106.
    [13]YANG C F,CHEN F L,GIERLOTKA W,et al.Thermodynamic properties and phase equilibria of Sn-Bi-Zn ternary alloys[J].Materials Chemistry&Physics,2008,112(1):94-103.
    [14]NOOR E E M,SHARIF N M,YEW C K,et al.Wettability and strength of In-Bi-Sn lead-free solder alloy on copper substrate[J].Journal of Alloys&Compounds,2010,507(1):290-296.
    [15]YEH C H,CHANG L S,STRAUMAL B B.Wetting transition of grain boundaries in the Sn-rich part of the Sn-Bi phase diagram[J].Journal of Materials Science,2011,46(5):1557-1562.
    [16]ZHANG Q K,LONG W M,YU X Q,et al.Effects of Ga addition on microstructure and properties of Sn-Ag-Cu/Cu solder joints[J].Journal of Alloys and Compounds,2015,622:973-978.
    [17]MA D,WU P.Improved microstructure and mechanical properties for Sn58Bi0.7Zn solder joint by addition of graphene nanosheets[J].Journal of Alloys and Compounds,2016,671:127-136.
    [18]PROKHORENKO V Y,ROSHCHUPKIN V V,POKRASIN M A,et al.Liquid gallium:Potential uses as a heat-transfer agent[J].High Temperature,2000,38(6):954-968.
    [19]ZHANG J,HOSEMANN P,MALOY S.Models of liquid metal corrosion[J].Journal of Nuclear Materials,2010,404(1):82-96.
    [20]YUAN J,ZHANG K,ZHANG X,et al.Thermal characteristics of Mg-Zn-Mn alloys with high specific strength and high thermal conductivity[J].Journal of Alloys&Compounds,2013,578(6):32-36.
    [21]BARIN I,KNACKE O,KUBASCHEWSKI O.Thermochemical properties of inorganic substances[M].Germany:Springer-Verlag,1973.
    [22]VIZDAL J,BRAGA M H,KROUPA A,et al.Thermodynamic assessment of the Bi-Sn-Zn System[J].Calphad-computer Coupling of Phase Diagrams&Thermochemistry,2007,31(4):438-448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700