上游激波干扰时斜激波串受迫振荡特性实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study of Forced Oblique Shock Train Oscillation and Upstream Background Shocks Interaction
  • 作者:程川 ; 王成鹏 ; 程克明 ; 薛龙生
  • 英文作者:CHENG Chuan;WANG Cheng-peng;CHENG Ke-ming;XUE Long-sheng;College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics;
  • 关键词:激波串 ; 斜楔 ; 压力扰动 ; 受迫振荡 ; 顺压梯度
  • 英文关键词:Oblique shock train;;Ramp;;Pressure perturbation;;Forced oscillation;;Favorable pressure gradient
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:南京航空航天大学航空宇航学院;
  • 出版日期:2018-10-12 16:21
  • 出版单位:推进技术
  • 年:2018
  • 期:v.39;No.258
  • 基金:国家自然科学基金(51776096;51476076);; 江苏省普通高校学术学位研究生创新计划项目
  • 语种:中文;
  • 页:TJJS201812014
  • 页数:9
  • CN:12
  • ISSN:11-1813/V
  • 分类号:112-120
摘要
为了研究斜激波串在与上游激波相互干扰时对下游周期性扰动的响应特征,在来流为马赫数2.7的直管道上游设计了一种等宽度斜楔,在下游中心截面位置安装了旋转的椭圆凸轮,以产生类正弦形式的周期性反压扰动,采用了动态压力测量、高速纹影和粒子图像测速技术等手段进行了试验。结果表明:内置斜楔在管道内产生入射激波、分离激波、膨胀波、再附激波和激波诱导分离等复杂背景流场,在分离区附近形成有顺压梯度和逆压梯度的区域。下游产生的正弦形式的周期性扰动会沿着边界层亚声速混合区域逆流前传,引起壁面压力脉动和斜激波串的周期性振荡运动,振荡频率与反压扰动频率相同。在管道内均匀流场中,斜激波串受迫振荡运动的幅值随着反压扰动频率的增加而逐渐减小。在内置斜楔的管道中,斜激波串受迫振荡运动的幅值大大减小,而且随着反压扰动频率的增加基本保持不变。以文中fs=21Hz为例,斜激波串在上游激波干扰中的受迫振荡幅值仅为在均匀来流中振荡幅值的22%。
        To study the response of an oblique shock train and upstream shocks interaction to downstream periodic pressure perturbations,a ramp with equal width was installed inside a Ma=2.7 straight duct,and the ex-periments were conducted with high frequency pressure measurements,high-speed Schlieren visualizations andparticle image velocimetry(PIV)testing. The shock train was forced to oscillate by a rotating elliptical shaftwhich produced nearly sinusoidal periodic pressure perturbation and located in the middle of the downstreamchannel section. The results show that the ramp generates a complex background flow field inside the duct,whichincludes an incident shock,separation shock,expansion wave,reattached shock,shock induced separation,and flow region with favorable and adverse pressure gradients. The downstream sinusoidal pressure perturbationspropagate upstream to the oblique shock train through the subsonic mixed region and cause the oblique shocktrain to oscillate at the same frequency with downstream pressure perturbations. The amplitude of shock oscilla-tion was negative correlated with frequency in the uniform ducted flow. During the uniform ducted flow,the ampli-tude of forced oblique shock train oscillation was decreased with the increasing frequency. While in the ductedflow with a ramp,the amplitude of forced shock train oscillation was decreased rapidly and was almost the same with the increasing frequency. As shown in case of fs=21 Hz,the amplitude of forced shock train oscillation was only 22% of that in the uniform ducted flow.
引文
[1] Matsuo K,Miyazato Y,Kim H D. Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows[J].Progress in Aerospace Sciences,1999,35(1):33-100.
    [2] Heiser W H,Pratt D T. Hypersonic Air Breathing Propulsion[M]. Washington:AIAA Education Series,1994.
    [3] Huang T,Yue L,Ma S,et al. Downstream Pressure Variation Induced Hysteresis in the Scramjet Isolator[C]. Xiamen:21st AIAA International Space Planes and Hypersonics Technologies Conference,2017.
    [4] Lin K C,Jackson K,Behdadnia R,et al. Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Cavity Flameholder[J]. Journal of Propulsion and Power,2010,26(6):1161-1170.
    [5] Gnani F,Zare-Behtash H,Kontis K. Pseudo-Shock Waves and Their Interactions in High-Speed Intakes[J]. Progress in Aerospace Sciences,2016,82(4):36-56.
    [6]易仕和,陈植.隔离段激波串流场特征的试验研究进展[J].物理学报,2015,64(19).
    [7] Morgan B,Duraisamy K,Lele S K. Large-Eddy Simulations of a Normal Shock Train in a Constant-Area Isolator[J]. AIAA Journal,2014,52(3):539-558.
    [8] Wagner J L,Yuceil K B,Clemens N T. PIV Measurements of Unstart of an Inlet-Isolator Model in a Mach 5Flow[C]. San Antonio:39th Fluid Dynamics Conference and Exhibit,2009.
    [9] Gao T,Liang J,Sun M,et al. Analysis of Separation Modes Variation in a Scramjet Combustor with SingleSide Expansion[J]. AIAA Journal,2017,55(4):1307-1317.
    [10]田旭昂,王成鹏,程克明. Ma5斜激波串动态特性实验研究[J].推进技术,2014,35(8):1030-1039.(TIAN Xu-ang,WANG Cheng-peng,CHENG Keming. Experimental Investigation of Dynamic Characteristics of Oblique Shock Train in Mach 5 Flow[J]. Journal of Propulsion Technology,2014,35(8):1030-1039.)
    [11] Wang C,Xue L,Tian X. Experimental Characteristics of Oblique Shock Train Upstream Propagation[J]. Chinese Journal of Aeronautics,2017,30(2):663-676.
    [12] Tan H J,Li L G,Wen Y F,et al. Experimental Investigation of the Unstart Process of a Generic Hypersonic Inlet[J]. AIAA Journal,2011,49(2):279-288.
    [13] Tan H J,Sun S,Huang H X. Behavior of Shock Trains in a Hypersonic Inlet/Isolator Model with Complex Background Waves[J]. Experiments in Fluids,2012,53(6):1647-1661.
    [14] Xu K,Chang J T,Zhou W,et al. Mechanism and Prediction for Occurrence of Shock-Train Sharp Forward Movement[J]. AIAA Journal,2016,54(4):1403-1412.
    [15]曹学斌,张堃元.非对称来流下带斜楔的短隔离段数值研究[J].推进技术,2009,30(6):677-681.(CAO Xue-bin,ZHANG Kun-yuan. Numerical Investigation for the Short Isolator with a Ramp under Asymmetric Incoming Flow[J]. Journal of Propulsion Technology,2009,30(6):677-681.)
    [16] Bruce P J K,Babinsky H. Unsteady Shock Wave Dynamics[J]. Journal of Fluid Mechanics,2008,603(603):463-473.
    [17] Bruce P J K,Babinsky H,Tartinville B,et al. Experimental and Numerical Study of Oscillating Transonic Shock Waves in Ducts[J]. AIAA Journal,2011,49(8):1710-1720.
    [18] Galli A,Corbel B,Bur R. Control of Forced ShockWave Oscillations and Separated Boundary Layer Interaction[J]. Aerospace Science and Technology,2005,9(8):653-660.
    [19] Bur R,Benay R,Galli A,et al. Experimental and Numerical Study of Forced Shock-Wave Oscillations in a Transonic Channel[J]. Aerospace Science and Technology,2006,10(4):265-278.
    [20] Fan X,Bing X,Wang Y,et al. Experimental Study on the Self-Excited Oscillation and the Forced Oscillation of Shock Train in a Rectangular Isolator[C]. Xiamen:21st AIAA International Space Planes and Hypersonics Technologies Conference,2017.
    [21] Cheng C,Wang C,Cheng K,et al. Experimental Study of Unsteady Oblique Shock Train and Boundary Layer Interactions[C]. Xiamen:21st AIAA International Space Planes and Hypersonics Technologies Conference,2017.
    [22] Culick F E C, Rogers T. The Response of Normal Shocks in Diffusers[J]. AIAA Journal,1983,21(10):1382-1390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700