α-Zr在700°C下的滑移变形机制(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Slip deformation mechanism of α-Zr at 700 °C
  • 作者:庆辉 ; Adrien ; CHAPUIS ; 栾佰峰 ; 刘庆
  • 英文作者:Qing-hui ZENG;Adrien CHAPUIS;Bai-feng LUAN;Qing LIU;College of Materials Science and Engineering, Chongqing University;
  • 关键词:变形机制 ; 锆合金 ; EBSD ; 晶体塑性 ; 塑性变形
  • 英文关键词:deformation mechanism;;Zr alloy;;EBSD;;crystal plasticity;;plastic deformation
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:重庆大学材料科学与工程学院;
  • 出版日期:2019-07-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Projects(51531005,51421001,51371202,51505046)supported by the National Natural Science Foundation of China;; Project(106112017CDJQJ138803)supported by the Fundamental Research Funds for the Central University of China
  • 语种:英文;
  • 页:ZYSY201907012
  • 页数:11
  • CN:07
  • ISSN:43-1239/TG
  • 分类号:116-126
摘要
锆合金的力学性能、耐腐蚀性能和吸氢行为与其加工过程中形成的织构密切相关。采用700°C下的压缩变形实验、EBSD显微组织观察以及黏塑性自洽建模研究α-Zr的高温变形行为。结果表明,当应变速率e(5)£1 s~(-1)时,孪生变形的开启量可以忽略不计。所有滑移系的应变速率敏感因子m=0.17。选取的材料参数很好地重现了力学各向异性和变形织构,通过对比实验测量与模拟计算得出的应变各向异性对材料参数进行验证。模拟研究结果表明,在高温条件下,柱面滑移是最容易开启的变形机制,而锥面ác+a?滑移最难开启,而基面滑移和锥面áa?滑移作为比较容易开启的滑移系在变形中大量开启。
        Mechanical properties, corrosion behavior and hydrogen absorption of zirconium alloys are related to the texture resulting from prior forming processes. In order to investigate the high temperature deformation behavior of α-Zr, compression tests at 700 °C, microstructure measurements via EBSD, and visco-plastic self-consistent modeling were performed. Twinning activity was negligible at strain rates e(5) ≤1 s~(-1). The strain rate sensitivity m=0.17 seemed to be the same for all slip modes. Material parameters were fitted to reproduce the mechanical anisotropy and deformed texture, and were validated by comparing the simulated and measured strain anisotropy. The best-fit simulation showed that at high temperatures prismatic slip was the easiest deformation mode and pyramidal ác+a? was the hardest, but basal slip and pyramidal áa? slip operated easily and in large amount.
引文
[1] MURTY K L, CHARIT I. Texture development and anisotropic deformation of Zircaloys[J]. Progress in Nuclear Energy, 2006, 48:325-359.
    [2] KRISHNA K V M, SAHOO S K, SAMAJDAR I, NEOGY S,TEWARI R, SRIVASTAVA D, DEY G K, DAS G H, SAIBABA N,BANARJEE S. Microstructural and textural developments during Zircaloy-4 fuel tube fabrication[J]. Journal of Nuclear Materials,2008, 383(1-2):78-85.
    [3] AKHTAR A, TEGHTSOONIAN A. Plastic deformation of zirconium single crystals[J]. Acta Metallurgica, 1971, 19:655-663.
    [4] ZAEFFERER S. A study of active deformation systems in titanium alloys:Dependence on alloy composition and correlation with deformation texture[J]. Materials Science and Engineering A, 2003,344:20-30.
    [5] AKHTAR A. Basal slip in zirconium[J]. Acta Metallurgica, 1973, 21:1-11.
    [6] QIAO H, WU P D, WANG H, GHARGHOURI M A, DAYMOND M R. Evaluation of elastic–viscoplastic self-consistent polycrystal plasticity models for zirconium alloys[J]. International Journal of Solids and Structures, 2015, 71:308-322.
    [7] RAUTENBERG M, FEAUGAS X, POQUILLON D, CLOUE J M.Microstructural characterization of creep anisotropy at 673 K in the M5 alloy[J]. Acta Materialia, 2012, 60:4319-4327.
    [8] AKHTAR A. Compression of zirconium single crystals parallel to the c-axis[J]. Journal of Nuclear Materials, 1973, 47:79-86.
    [9] MCCABE R J, CERRETA E K, MISRA A, KASCHNER G C,TOME C N. Effects of texture, temperature and strain on the deformation modes of zirconium[J]. Philosophical Magazine A,2007, 86:3595-3611.
    [10] LEBENSOHN R A, GONZALEZ M I, TOME C N, POCHETTINO A A. Measurement and prediction of texture development during a rolling sequence of Zircaloy-4 tubes[J]. Journal of Nuclear Materials,1996, 229:57-64.
    [11] BEYERLEIN I J, TOME C N. A dislocation-based constitutive law for pure Zr including temperature effects[J]. International Journal of Plasticity, 2008, 24:867-895.
    [12] KNEZEVIC M, ZECEVIC M, BEYERLEIN I J, BINGERT J F,MCCABE R J. Strain rate and temperature effects on the selection of primary and secondary slip and twinning systems in HCP Zr[J]. Acta Materialia, 2015, 88:55-73.
    [13] YAPICI G G, TOME C N, BEYERLEIN I J, KARAMAN I,VOGEL S C, LIU C. Plastic flow anisotropy of pure zirconium after severe plastic deformation at room temperature[J]. Acta Materialia,2009, 57:4855-4865.
    [14] GONG J C, BRITTON T B, CUDDIHY M A, DUNNE F P E,WILKINSON A J.?a?Prismatic,?a?basal, and?c+a?slip strengths of commercially pure Zr by micro-cantilever tests[J]. Acta Materialia,2015, 96:249-257.
    [15] SALEM A A, KALIDINDI S R, SEMIATIN S L. Strain hardening due to deformation twinning inα-titanium:Constitutive relations and crystal-plasticity modeling[J]. Acta Materialia, 2005, 53:3495-3502.
    [16] EVANS C, JONES N G, RUGG D, LINDLEY T C, DYE D. The effect of deformation mechanisms on the high temperature plasticity of Zircaloy-4[J]. Journal of Nuclear Materials, 2012, 424:123-131.
    [17] HONNIBAL P D, PREUSS M, RUGG D, QUINTA DA FONSECA J.Grain breakup during elevated temperature deformation of an HCP metal[J]. Metallurgical and Materials Transactions A, 2015, 46:2143-2156.
    [18] BARNETT M R, GHADERI A, SABIROV I, HUTCHINSON B.Role of grain boundary sliding in the anisotropy of magnesium alloys[J]. Scripta Materialia, 2009, 61:277-280.
    [19] PEREZ-PRADO M T, RUANO O A. Texture evolution during annealing of magnesium AZ31 alloy[J]. Scripta Materialia, 2002, 46:149-155.
    [20] BOZZOLO N, DEWOBROTO N, GROSDIDIER T, WAGNER F.Texture evolution during grain growth in recrystallized commercially pure titanium[J]. Materials Science and Engineering A, 2005, 397:346-355.
    [21] YI S B, ZAEFFERER S, BROKMEIER H G. Mechanical behaviour and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures[J]. Materials Science and Engineering A,2006, 424:275-281.
    [22] GERSPACH F, BOZZOLO N, WAGNER F. About texture stability during primary recrystallization of cold-rolled low alloyed zirconium[J]. Scripta Materialia, 2009, 60:203-206.
    [23] MA Q, LI B, MARIN E B, HORSTEMEYER S J. Twinning-induced dynamic recrystallization in a magnesium alloy extruded at 450°C[J]. Scripta Materialia, 2011, 65:823-826.
    [24] ISAENKOVA M G, PERLOVICH Y A, FESENKO V A,KRYMSKAYA O A, KRAPIVKA N A, TKHU S S. Regularities of recrystallization of rolled single crystals and polycrystals of zirconium and alloy Zr-1%Nb[J]. The Physics of Metals and Metallography, 2014, 115:756-764.
    [25] WALDE T, RIEDEL H. Modeling texture evolution during hot rolling of magnesium alloy AZ31[J]. Materials Science and Engineering A, 2007, 443:277-284.
    [26] LEBENSOHN R A, TOMéC N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals:Application to zirconium alloys[J].Acta Metallurgica et Materialia, 1993, 41:2611-2624.
    [27] KIM M S, JUNG J Y, SONG Y M, CHOI S H. Simulation of microtexture developments in the stir zone of friction stir-welded AZ31 Mg alloys[J]. International Journal of Plasticity, 2017, 94:24-43.
    [28] LUAN B F, ZENG Q H, ZENG W, LIU Q. Dynamic recrystallization of Zr-1Sn-0.3Nb alloy during hot compression[J]. IOP Conference Series:Materials Science and Engineering, 2015, 89:012034.
    [29] KAPOOR R, REDDY G B, SARKAR A. Discontinuous dynamic recrystallization inα-Zr[J]. Materials Science and Engineering A,2018, 718:104-110.
    [30] SARKAR A, CHANDANSHIVE S A, THOTA M K, KAPOOR R.High temperature deformation behavior of Zr-1Nb alloy[J]. Journal of Alloys and Compounds, 2017, 703:56-66.
    [31] ZENG Q, LUAN B, WANG Y, ZHANG X, LIU R, MURTY K L,LIU Q. Effect of initial orientation on dynamic recrystallization of a zirconium alloy during hot deformation[J]. Materials Characterization, 2018, 145:444-453.
    [32] LUAN B F, GAO S S, CHAI L J, LI X Y, CHAPUIS A, LIU Q.Compression deformation behavior of Zr-1Sn-0.3Nb alloy with different initial orientations at 650°C[J]. Materials and Design, 2013,52:1065-1070.
    [33] WANG H, RAEISINIA B, WU P D, AGNEW S R, TOME C N.Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet[J]. International Journal of Solids and Structures, 2010, 47:2905-2917.
    [34] PEREZ-PRADO M T, BARRABES S R, KASSNER M E,EVANGELISTA E. Dynamic restoration mechanisms inα-zirconium at elevated temperatures[J]. Acta Materialia, 2005, 53:581-591.
    [35] KASSNER M E, PEREZ-PRADO M T, HAYES T A, JIANG L,BARRABES S R, LEE I F. Elevated temperature deformation of Zr to large strains[J]. Journal of Materials Science, 2013, 48:4492-4500.
    [36] CAILLARD D, RAUTENBERG M, FEAUGAS X. Dislocation mechanisms in a zirconium alloy in the high-temperature regime:An in situ TEM investigation[J]. Acta Materialia, 2015, 87:283-292.
    [37] KABIRIAN F, KHAN A S, GNAUPEL-HERLOD T. Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions[J].International Journal of Plasticity, 2015, 68:1-20.
    [38] KNEZEVIC M, ZECEVIC M, BEYERLEIN I J, LEBENSOHN R A.A numerical procedure enabling accurate descriptions of strain rate-sensitive flow of polycrystals within crystal visco-plasticity theory[J]. Computational Methods in Applied Mechanics and Engineering, 2016, 308:468-482.
    [39] CHAPUIS A, LIU Q. Effect of strain rate sensitivity in visco-plastic modeling[J]. International Journal of Solids and Structures, 2018,152-153:217-227.
    [40] KURUKURI S, WORSWICK M J, GHAFFARI TARI D, MISHRA R K, CARTER J T. Rate sensitivity and tension–compression asymmetry in AZ31B magnesium alloy sheet[J]. Philosophical Transactions of the Royal Society A, 2013, 372:20130216.
    [41] LUAN B F, LI X Y, ZHANG M, CHAPUIS A, LIU Q. Deformation mechanisms and dynamic recrystallisation of Zr alloy with different initial textures compressed at 700oC[J]. Materials Research Innovation, 2014, 18(S4):s1095-s1101.
    [42] AGNEW S R, YOO M H, TOME C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Materialia, 2001, 49:4277-4289.
    [43] CHAPUIS A, LIU Q. Simulations of texture evolution for HCP metals:Influence of the main slip systems[J]. Computational Materials Science, 2015, 97:121-126.
    [44] JAIN A, AGNEW S R. Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet[J].Materials Science and Engineering A, 2007, 462:29-36.
    [45] ZHOU G W, JAIN M K, WU P D, SHAO Y C, LI D Y, PENG Y H.Experiment and crystal plasticity analysis on plastic deformation of AZ31B Mg alloy sheet under intermediate temperatures:How deformation mechanisms evolve[J]. International Journal of Plasticity, 2016, 79:19-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700