镉胁迫对草地早熟禾生长与生理代谢的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Cadmium Stress on Growth and Physiological Metabolism of Kentucky Bluegrass
  • 作者:鲜靖苹 ; 柴澍杰 ; 王勇 ; 牛奎举 ; 董文科 ; 马晖玲 ; 张然
  • 英文作者:XIAN Jingping;CHAI Shujie;WANG Yong;NIU Kuiju;DONG Wenke;MA Huiling;ZHANG Ran;Sino-U.S.Center for Grazingland Ecosystem Sustainability/Pratacultural Engineering Laboratory of Gansu Province/Key Laboratory of Grassland Ecosystem, Ministry of Education/College of Pratacultural Science, Gansu Agricultural University;School of Science and Technology, Xinxiang University;
  • 关键词:草地早熟禾 ; 镉胁迫 ; 隶属函数法
  • 英文关键词:Kentucky bluegrass;;cadmium stress;;subordinate function values analysis
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:甘肃农业大学草业学院/草业生态系统教育部重点实验室/甘肃省草业工程实验室/中-美草地畜牧业可持续发展研究中心;新乡学院生命科学技术学院;
  • 出版日期:2018-11-19 13:07
  • 出版单位:核农学报
  • 年:2019
  • 期:v.33
  • 基金:甘肃农业大学科技创新基金(学科建设基金)项目(GAU-XKJS-2018-018);; 国家自然科学基金(31360583);; 2017年国家大学生创新创业计划训练项目(201710733007)
  • 语种:中文;
  • 页:HNXB201901026
  • 页数:11
  • CN:01
  • ISSN:11-2265/S
  • 分类号:182-192
摘要
为探究不同草地早熟禾种质材料耐镉(Cd)性的差异,筛选出耐Cd和Cd敏感种质,采用温室盆栽试验法,通过测定早熟禾幼苗干物质含量、叶片相对含水量和光合色素含量等指标,运用隶属函数法对材料的耐Cd性进行综合评价,以及对不同浓度Cd处理下10份材料的丙二醛(MDA)、脯氨酸(Pro)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)等指标进行测定,研究Cd胁迫下10份草地早熟禾种质的生长及生理响应。结果表明,随着Cd处理浓度的升高,10份草地早熟禾材料苗期的干物质含量、叶片相对含水量和叶绿素含量等较对照均呈显著下降趋势,经综合评价筛选出10号耐Cd材料和8号Cd敏感材料。10份草地早熟禾材料的地上部分和根系中Cd浓度均随着Cd处理浓度的增加而增加。相同Cd浓度处理下,地上部分Cd浓度最高为10号材料,5号次之,8号地上部分的Cd浓度最低。根系Cd浓度最高是10号材料。10号材料的3种酶活性和Pro含量均高于其他材料,MDA含量均低于其他材料,表现出较高的耐Cd性,而8号材料则相反,其耐Cd性的测定结果与隶属函数评价结果相符。本研究结果为草地早熟禾在重金属修复潜力方面提供了理论依据。
        The main purpose of this paper was to study the differences response in the growth and physiological of 10 Kentucky bluegrass materials under cadmium stress and to select the cadmium resistant materials and cadmium sensitive materials. A pot experiment was conducted under greenhouse condition to investigate the resistance of 10 Kentucky bluegrass materials. Through the determination and analysis of the dry matter content, relative water content and photosynthetic pigment content of the seedling, the cadmium resistance of materials was evaluated comprehensively using the membership function comprehensive evaluation method. To improve the accuracy of the test, the effect of cadmium on contents of malondialdehyde and proline on activities of superoxide dismutase, peroxidase and catalase were analyzed. The results showed that the dry matter content, leaf relative water content and the photosynthetic pigment content of Kentucky bluegrass were significantly lower under Cd treatment than the control and decreased gradually as Cd concentration increased. Cadmium resistant material No. 10 and cadmium sensitive material No. 8 were selected by the result of comprehensive evaluation. The concentration and accumulation of Cd in both shoots and roots increased with Cd dose. At the same level of Cd treatment, the highest shoot concentration of Cd was found in material No. 10, followed by material No.5, while the lowest shoot concentration of Cd was found in material No. 8. The highest root concentration of Cd was in material No. 10. Antioxidative enzyme activities of material No. 10 material were higher than other materials, however its contents of malondialdehyde were lower than other materials which indicated that No. 10 has stronger resistance to Cadmium contrary to material No. 8. The determination of cadmium resistance was consistent with the evaluation result of the membership. The conclusions of this study would provide reference for plants breeding on heavy metal pollution phytoremediation.
引文
[1] 杨启良,武振中,陈金陵,刘小刚,王卫华,刘艳伟. 植物修复重金属污染土壤的研究现状及其水肥调控技术展望[J].生态环境学报, 2015,24(6):1075-1084
    [2] 樊霆,叶文玲,陈海燕,鲁洪娟,张颖慧,李定心,唐子阳,马友华. 农田土壤重金属污染状况及修复技术研究[J].生态环境学报,2013,22(10):1727-1736
    [3] 刘小诗,李莲芳,曾希柏,胡新. 典型农业土壤重金属的累积特征与源解析[J].核农学报,2014,28(7):1288-1297
    [4] 王宝媛,濮阳雪华,宋桂龙,周述琼,赵克奇,蒋凯. 20个高羊茅品种镉耐性评价及富集特征[J].草地学报,2017,25(1):107-114
    [5] 刘俊祥,孙振元,韩蕾,巨关升,钱永强. 草坪草对重金属胁迫响应的研究现状[J].中国农学通报,2009,25(13):142-145
    [6] 陈伟. 重金属胁迫对草坪草生长发育及生理特性的影响[D].兰州:甘肃农业大学,2014
    [7] 徐佩贤. 高羊茅和草地早熟禾对镉的耐受能力和解毒机制研究[D].上海:上海交通大学,2014
    [8] 韩建国,毛培胜. 牧草种子学[M].北京:中国农业大学出版社,2011
    [9] 张志良,瞿伟菁.植物生理学实验指导[M].第三版.北京:高等教育出版社,2003
    [10] 李影,王友保. 4种蕨类草本植物对Cu的吸收和耐性研究[J].草业学报,2010,19(3):191-197
    [11] 李娜,罗俊杰,张仁陟,刘新星. 持续模拟干旱胁迫对胡麻萌发特性影响及品种抗旱性评价研究[J].核农学报,2016,30(2):379-387
    [12] 宋瑜,金樑,曹宗英,王晓娟. 植物对重金属镉的响应及其耐受机理[J]. 草业学报,2008,17(5):84-91
    [13] Van K O, Snel J F. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynthesis Research, 1990, 25(3):147-50
    [14] 杨丽,袁庆华. 重金属镉对野生披碱草生长与生理特性的影响[J]. 中国草地学报,2013,35(4):25-33
    [15] Larcher W. Physiological Plant Ecology, Ecophysiology and Stress Physiology of Functional Groups[M]. New York: Springer-verlay, 1995
    [16] Sabreen S, Sugiyama S.Trade-off between cadmium tolerance and relative growth rate in 10 grass species [J]. Environmental and Experimental Botany, 2008, 63(1):327-332
    [17] 张芳,方溪,张丽静. 草类对重金属胁迫的生理生化响应机制[J]. 草业科学,2012,29(4):534-541
    [18] 盛洁. 黑麦草对重金属的响应及修复调控研究进展[J]. 作物研究,2014,28(8):948-952
    [19] Balachandran S, Hurry Ⅴ M, Kelley S E, Osmond C B, Robinson S A.Concepts of plant biotic stress. Some insights into the stress physiology of virus‐infected plants, from the perspective of photosynthesis[J]. Physiologia Plantarum, 2010, 100(2):203-213
    [20] 张永平,沈若刚,姚雪琴,陈幼源. 镉胁迫对甜瓜幼苗抗氧化酶活性和光合作用的影响[J].中国农学通报,2015,31(34):82-88
    [21] Vitória A P, Cunha M D, Azevedo R A.Ultrastructural changes of radish leaf exposed to cadmium[J]. Environmental & Experimental Botany, 2006, 58(1/3):47-52
    [22] 刘大林,杨俊俏,王奎,刘兆明,孙启鑫. 土壤镉铅污染对草地早熟禾幼苗生长的影响[J].中国草地学报,2014,36(5):113-118
    [23] Lin Y F, Aarts M G. The molecular mechanism of zinc and cadmium stress response in plants [J]. Cellular & Molecular Life Sciences Cmls, 2012, 69(19):3187
    [24] Guo B,Liang Y C, Zhu Y G, Zhao F J. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress [J]. Environmental Pollution, 2007, 147(3):743-749
    [25] Singh H P, Batish D R, Kaur G, Arora K, Kohli.R K.Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots[J]. Environmental & Experimental Botany, 2008, 63(5):158-167
    [26] Mishra S, Srivastava S, Tripathi R D, Govindarajan R, Kuriakose S Ⅴ. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L.[J]. Plant Physiology & Biochemistry, 2006, 44(1):25-37
    [27] Hegedüs A, Erdei S, Horváth G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress[J]. Plant Science an International Journal of Experimental Plant Biology, 2001, 160(6):1085-1093
    [28] 杨居荣,贺建群,蒋婉茹. Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193-197
    [29] 井大炜,邢尚军,杜振宇,刘方春. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J].应用生态学报,2013,24(7):1809-1816
    [30] 吴旭红,罗新义. 镉胁迫对苜蓿膜脂过氧化的影响及保护系统的应答[J].中国草地,2005,27(3):37-40
    [31] 陈宏,徐秋曼,王葳,洪仁远,彭永康. 镉对小麦幼苗脂质过氧化和保护酶活性的影响[J].西北植物学报,2000,20(3):399-403
    [32] 刘俊祥. 多年生黑麦草对重金属镉的抗性机理研究[D].北京:中国林业科学研究院,2012
    [33] 刘长浩,娄来清,郭涛,骆天鹏,蔡庆生. 柳枝稷和坚尼草的耐镉性初步研究[J].草业学报,2015,24(11):100-108
    [34] 徐佩贤,费凌,陈旭兵,王兆龙. 四种冷季型草坪植物对镉的耐受性与积累特性[J].草业学报,2014,23(6):176-188
    [35] Wei S H, Zhou Q X, Wang X, Zhang K S, Guo G L, Ma L Q Y. A newly-discovered Cd-hyperaccumulator Solanum nigrum L [J]. Chinese Science Bulletin,2005,50(1):33-38
    [36] Zhang S R, Chen M Y, Li T, Xu X X, Deng L J. A newly found cadmium accumulator-Malva sinensis Cavan [J]. Journal of Hazardous Materials,2010,173(3):705-709
    [37] Brown S L, Chaney R L, Angle J S, Baker A J M. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium-contaminated soil [J]. Journal of Environmental Quality,1994,23(6):1151-1157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700