南方型紫花苜蓿叶片响应盐胁迫的代谢组学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metabolomics Analysis of Leaf Response of Southern Alfalfa under Salt Stress
  • 作者:李佳赟 ; 马进 ; 王依纯 ; 朱绍华
  • 英文作者:LI Jiayun;MA Jin;WANG Yichun;ZHU Shaohua;School of Landscape Architecture,Zhejiang Agriculture and Forestry University;
  • 关键词:紫花苜蓿 ; 生长参数 ; 叶片 ; 盐胁迫 ; 代谢组学
  • 英文关键词:Alfalfa;;Growth parameter;;Leaves;;Salt stress;;Metabolomics
  • 中文刊名:HNNY
  • 英文刊名:Journal of Henan Agricultural Sciences
  • 机构:浙江农林大学风景园林与建筑学院;
  • 出版日期:2019-05-13 11:54
  • 出版单位:河南农业科学
  • 年:2019
  • 期:v.48;No.532
  • 基金:浙江省自然科学基金项目(LY16C170003);; 国家自然科学基金项目(31272494)
  • 语种:中文;
  • 页:HNNY201905006
  • 页数:7
  • CN:05
  • ISSN:41-1092/S
  • 分类号:36-42
摘要
为明确紫花苜蓿叶片对盐胁迫的响应机制,采用比较代谢组学方法与气相色谱和飞行时间质谱联用(GC-TOF/MS)技术分析了盐胁迫下野生型与突变体紫花苜蓿叶片的代谢产物差异。结果表明,盐胁迫对野生型和突变体紫花苜蓿的株高、根长、地上和地下部干质量的生长均有抑制作用,与CK(正常培养)相比,盐胁迫下突变体紫花苜蓿地上和地下部干质量、株高、根长的降幅小于野生型。通过主成分分析(PCA)与正交偏最小二乘法判别分析(OPLS-DA)方法,筛选出野生型与突变体紫花苜蓿叶片中有41种共同表达的差异代谢产物。与CK相比,盐胁迫下野生型紫花苜蓿叶片中甘露糖和葡萄糖等可溶性糖和脂肪酸代谢产物含量下降,参与TCA循环的柠檬酸、富马酸、α-酮戊二酸和琥珀酸等含量显著增加,而盐胁迫下突变体叶片中脯氨酸、谷氨酸、肌醇和甘露糖等有机化合物含量上升。推测,野生型紫花苜蓿的耐盐机制可能是促进TCA循环产生更多的ATP,而突变体紫花苜蓿的耐盐机制则可能是积累了较多的渗透物质(糖、肌醇、脯氨酸)。
        In order to clear and definite the reaction mechanism of alfalfa leaves under salt stress,the difference in metabolites between wild and mutant alfalfa leaves under salt stress was analyzed by using comparative metabolomics,and GC/TOF-MS.The results showed that salt stress inhibited the growth of plant height,root length,above-ground and below-ground dry weight of wild-type and mutant alfalfa.Compared with the control(normal culture),the plant height,root length,above-ground and below-ground dry weight of mutant alfalfa under salt stress decreased less than that of wild type.Besides,41 co-expressed differential metabolites in both wild and mutant alfalfa leaves were screened out by using PCA and OPLS-DA.Compared with the control,the content of soluble sugar such as mannose and glucose and fatty acid metabolites decreased significantly under salt stress while the content of citric acid,fumaric acid,α-ketoglutaric acid and succinic acid involved in the TCA cycle increased significantly in the wild type alfalfa leaves.The content of organic compounds such as proline,glutamic acid,inositol and mannose increased in the leaves of mutants under salt stress.It indicated that the salt-tolerance mechanism of wild alfalfa might be producing more ATP by promoting the TCA cycle,while the salt-tolerance mechanism of mutant alfalfa might be accumulating more osmotic substances(such as sugar,inositol,proline).
引文
[1] YAMAGUCHI T,BLUMWALD E.Developing salt-tolerant crop plants:Challenges and opportunities[J].Trends in Plant Science,2005,10(12):615-620.
    [2] MUNNS R,TESTER M.Mechanisms of salinity tolerance[J].Annual Review of Plant Biology,2008,59(1):651-681.
    [3] DEMIRAL T,TüRKAN I.Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress[J].Environ Exp Bot,2006,56(1):72-79.
    [4] 邸娜,张耀强,李旭红,等.种子引发对盐胁迫下向日葵种子萌发和幼苗生理特性的影响[J].河南农业科学,2018,47(4):43-48.
    [5] 张冠初,张智猛,慈敦伟,等.干旱和盐胁迫对花生渗透调节和抗氧化酶活性的影响[J].华北农学报,2018,33(3):176-181.
    [6] 郑州元,林海荣,崔辉梅.外源硫化氢对盐胁迫下加工番茄幼苗生理生化特性的影响[J].华北农学报,2017,32(1):208-214.
    [7] 张华新,刘正祥,刘秋芳.盐胁迫下树种幼苗生长及其耐盐性[J].生态学报,2009,29(5):2263-2271.
    [8] GYGI S P,RIST B,GERBER S A,et al.Quantitative analysis of complex protein mixtures using isotope-coded affinity tags[J].Nature Biotechnology,1999,17(10):994-999.
    [9] SUMNER L W,MENDES P,DIXON R A.Plant metabolomics:Large-scale phytochemistry in the functional geno-mics era[J].Phytochemistry,2003,62(6):817-836.
    [10] 马进,刘志高,郑钢.南方型紫花苜蓿耐盐细胞系的筛选及生理特性分析[J].中国草地学报,2011,33(4):68-72.
    [11] 何磊,陆兆华,管博,等.盐碱胁迫对甜高粱种子萌发及幼苗生长的影响[J].东北林业大学学报,2012,32(3):67-71.
    [12] 吕建澎,李金旺,段霞飞,等.高粱重组自交系耐盐性相关性状遗传分析[J].华北农学报,2018,33(4):112-119.
    [13] 穆志新,李萌,秦慧彬.高粱芽期耐盐指标筛选及耐盐性评价[J].山西农业科学,2017,45(7):1075-1079.
    [14] 郭瑞.松嫩平原四种禾本科植物耐盐碱生理生态机制研究[D].长春:东北师范大学,2010.
    [15] 黄相玲,林妃妃,张明月,等.盐胁迫对小叶榄仁幼苗生长和渗透调节物质含量的影响[J].南方农业学报,2018,49(7):1364-1369.
    [16] 孙海博,赵杏锁,司家屹,等.模拟盐胁迫对勿忘草种子萌发及幼苗生长的影响[J].山西农业科学,2018,46(9):1450-1454.
    [17] GAVAGHAN C L,LI J V,HADFIELD S T,et al.Application of NMR-based metabolomics to the investigation of salt stress in maize(Zea mays)[J].Phytochemical Analysis,2011,22(3):214-224.
    [18] YANG C W,XU H H,WANG L L,et al.Comparative effects of salt-stress and alkali-stress on the growth,photosynthesis,solute accumulation,and ion balance of barley plants[J].Photosynthetica,2009,47(1):79-86.
    [19] SULMON C,VAN BAAREN J,CABELLO-HURTADO F,et al.Abiotic stressors and stress responses:What commonalities appear between species across biological organization levels?[J].Environmental Pollution,2015,202(23):66-77.
    [20] SAITO K,MATSUDA F.Metabolomics for functional genomics,systems biology,and biotechnology[J].Annual Review of Plant Biology,2010,61(1):463-489.
    [21] SANCHEZ D H,SZYMANSKI J,ERBAN A A,et al.Mining for robust transcriptional and metabolic responses to long-term salt stress:A case study on the model legume Lotus japonicus[J].Plant Cell & Environment,2010,33(4):468-480.
    [22] GILBERT G A,GADUSH M V,WILSON C,et al.Amino acid accumulation in sink and source tissues of Coleus blumei Benth.during salinity stress[J].Journal of Experimental Botany,1998,49:107-114.
    [23] WANG X C,CHANG L L,WANG B C,et al.Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance[J].Molecular & Cellular Proteomics,2013,12(8):2174-2195.
    [24] SMIRNOFF N.Plant resistance to environmental stress[J].Current Opinion in Biotechnology,1998,9(2):214-219.
    [25] SMIRNOFF N,CUMBES Q J.Hydroxyl radical scavenging activity of compatible solutes[J].Phytochemistry,1989,28(4):1057-1060.
    [26] SANCHEZ D H,PIECKENSTAIN F L,ESCARAY F,et al.Comparative ionomics and metabolomics in extremophile and glycophytic lotus species under salt stress challenge the metabolic pre-adaptation hypothesis[J].Plant Cell & Environment,2011,34(4):605-617.
    [27] RYBKA K,NITA Z.Physiological requirements for wheat ideotypes in response to drought threat[J].Acta Physiologiae Plantarum,2015,37(5):97.
    [28] 张婧.盐胁迫下野大豆(Glycine soja)和栽培大豆(Glycine max)幼苗叶片代谢组学比较研究[D].长春:东北师范大学,2017.
    [29] HU L X,ZHANG P P,JIANG Y,et al.Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in Kentucky bluegrass(Poa pratensis)[J].Plant Molecular Biology Reporter,2015,33(1):56-68.
    [30] MANSOUR N M,VAN HASSELT R R,KUIPER P J C,et al.Plasma membrane lipid alterations induced by NaCl in winter wheat roots[J].Physiologia Plantarum,1994,92(3):473-478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700