基于AquaCrop和NSGA-Ⅱ的灌溉制度多目标优化及其应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-objective optimization and its application on irrigation scheduling based on AquaCrop and NSGA-Ⅱ
  • 作者:宋健 ; 李江 ; 杨奇鹤 ; 毛晓敏 ; 杨健 ; 王凯
  • 英文作者:SONG Jian;LI Jiang;YANG Qihe;MAO Xiaomin;YANG Jian;WANG Kai;Centre for Agricultural Water Research in China,China Agricultural University;State Key Laboratory of Hydroscience and Engineering,Tsinghua University;
  • 关键词:AquaCrop ; NSGA-Ⅱ ; 灌溉制度优化 ; 覆膜 ; 模拟-优化
  • 英文关键词:AquaCrop;;NSGA-Ⅱ;;optimization of irrigation scheduling;;film mulching;;simulation-optimization
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:中国农业大学中国农业水问题研究中心;清华大学水沙科学与水利水电工程国家重点实验室;
  • 出版日期:2018-08-14 17:29
  • 出版单位:水利学报
  • 年:2018
  • 期:v.49;No.505
  • 基金:国家高技术研究发展计划项目(2016YFC040106-3);; 国家自然科学基金资助项目(51679234)
  • 语种:中文;
  • 页:SLXB201810012
  • 页数:12
  • CN:10
  • ISSN:11-1882/TV
  • 分类号:102-113
摘要
为了有助于在干旱区非充分灌水条件下制定合理的灌溉制度,构建了基于作物生长模型(AquaCrop)及多目标遗传算法(NSGA-Ⅱ)的灌溉制度多目标模拟-优化模型。利用甘肃石羊河绿洲2014—2015年不同灌水和覆膜处理下的春小麦田间试验数据对AquaCrop模型进行了率定与验证,并采用历史气象数据(1963—2016年)通过优化适线法确定了降水量保证率为25%、50%、75%的不同典型年,以最大产量及最小灌水量为目标对模型进行求解,得到了不同条件下灌水量与产量之间的关系曲线,分析了覆膜对于优化结果的影响,并分别对农户与农场两种类型的生产者进行了决策分析。结果表明:(1)作物的边际产量随着灌水总量的增加而减小,优化灌溉制度后的作物水分生产函数可以表示为二次函数。(2)覆膜的增产效应随着灌水量的增加而减小。(3)灌水次数对不覆膜条件下的产量影响较大,因此总灌水量小时应选择灌水次数少的灌溉制度,而总灌水量较大时,可采用灌水次数多的灌溉制度。(4)对不同的决策者采用不同的功效系数可以实现多样化的灌溉决策。
        In order to develop reasonable deficit irrigation schedules in arid area,a multi-objective simulation-optimization model,which is based on crop growth model(AquaCrop) and non-dominated sorting ge-netic algorithm(NSGA-Ⅱ),for irrigation scheduling was proposed and applied on the optimization and deci-sion-making of irrigation scheduling. Two years'(2014-2015) field experimental data of spring wheat un-der various irrigation-mulching treatments in the oasis of Shiyang River basin,Gansu Province were usedto calibrate and validate the AquaCrop model. The typical years of 25%,50% and 75% precipitation assur-ance were determined by optimum curve-fitting method according to the historical meteorological data(1963-2016). Taking maximum crop yield and minimum irrigation as the objectives,the relationship curvesbetween irrigation amount and crop yield were solved under different conditions. The influence of filmmulching on the optimized results was analyzed,and the decision-making for both farmers and farm corpo-rations were made. The results show that:(1) The marginal yield of crops would decrease with the in-crease of irrigation amount. The crop water production function after optimization of irrigation schedulingcould be fitted by quadratic function.(2) With the increase of irrigation amount,the enhancing effect offilm mulching on crop yield would decrease.(3) Under the condition of non-mulching, less irrigationtimes would be preferred under the low irrigation amount and more irrigation times would be preferred un-der the high irrigation amount.(4) Various irrigation scheduling decisions could be achieved by using different effective functions for decision-makers.
引文
[1]许迪,龚时宏.大型灌区节水改造技术支撑体系及研究重点[J].水利学报,2007,38(7):806-811.
    [2] SINGH A. An overview of the optimization modelling applications[J]. Journal of Hydrology,2012, 466(5):167-182.
    [3]崔远来.非充分灌溉优化配水技术研究综述[J].灌溉排水学报,2000,19(1):66-70.
    [4] JENSEN M E. Water consumption by agricultural plants[M]. Plant Water Consumption&Response,1968.
    [5]毛晓敏,尚松浩.作物非充分灌溉制度优化的0-1规划模型及其应用[J].农业机械学报,2014,45(17):153-158.
    [6]霍军军,尚松浩.基于模拟技术及遗传算法的作物灌溉制度优化方法[J].农业工程学报,2007,23(4):23-28.
    [7]尚松浩.作物非充分灌溉制度的模拟优化方法[J].清华大学学报(自然科学版),2005,45(9):1179-1183.
    [8] RITCHIE J R,OTTER S. Description and performance of CERES-Wheat:a user-oriented wheat yield model[M]. 1985.
    [9] DAM J C,HUYGEN J,WESSELING J G,et al. Theory of SWAP Version 2.0:Simulation of Water Flow,SoluteTransport and Plant Growth in the Soil-Water-Atmosphere-Plant Environment[Z]. Department of Water Resourc-es,Wageningen Agricultural University,1997.
    [10] STEDUTO P,HSIAO T C,RAES D,et al. AquaCrop--The FAO crop model to simulate yield response to wa-ter:I. Concepts and underlying principles[J]. Agronomy Journal,2009,101(3):426-437.
    [11]陈守煜,马建琴,邱林.多维多目标模糊优选动态规划及其在农业灌溉中的应用[J].水利学报,2002(4):33-38.
    [12]于芷婧,尚松浩.华北轮作农田灌溉制度多目标优化模型及应用[J].水利学报,2016,47(9):1188-1196.
    [13]张志宇,郄志红,吴鑫淼.冬小麦-夏玉米轮作体系灌溉制度多目标优化模型[J].农业工程学报,2013,29(16):102-111.
    [14]贺莉,刘庆怀.多目标优化理论与连续化方法[M].北京:科学出版社,2015.
    [15]高媛.非支配排序遗传算法(NSGA)的研究与应用[D].杭州:浙江大学,2006.
    [16] LINKER R,IOSLOVICH I,SYLAIOS G,et al. Optimal model-based deficit irrigation scheduling using AquaC-rop:A simulation study with cotton,potato and tomato[J]. Agricultural Water Management,2016,163:236-243.
    [17] LINKER R,SYLAIOS G. Efficient model-based sub-optimal irrigation scheduling using imperfect weather fore-casts[J]. Computers and Electronics in Agriculture,2016,130:118-127.
    [18]吴鑫淼,王晶,郄志红.基于多年降雨资料的作物灌溉制度多目标优化[J].农业机械学报,2013,44(4):108-112.
    [19]郄志红,韩李明,吴鑫淼.基于改进NSGA-Ⅱ的作物灌水量与灌溉日期同步优化[J].农业机械学报,2011,42(5):106-110.
    [20] LINKER R,KISEKKA I. Model-Based Deficit Irrigation of Maize in Kansas[J]. Transactions of the ASABE,2017,60(6):2011-2022.
    [21] DOORENBOS J,KASSAM A H. Yield response to water[J]. Irrigation&Agricultural Development,1980,33(6):257-280.
    [22] HSIAO T C,LEE H,STEDUTO P,et al. AquaCrop-the FAO crop model to simulate yield response to water:III. Parameterization and testing for maize[J]. Agronomy Journal,2009,101(3):448-459.
    [23] Raes D,Steduto P,Hsiao T C,et al. AquaCrop the FAO crop model to simulate yield response to water:II.Main algorithms and software description[J]. Agronomy Journal,2009,101(3):438-447.
    [24] RAES D,STEDUTO P,HSIAO T C,et al. AquaCrop-The FAO crop model to simulate yield response to water:reference manual[Z]. 2017.
    [25] JIANG X,TONG L,KANG S,et al. Planting density affected biomass and grain yield of maize for seed produc-tion in an arid region of Northwest China[J]. Journal of Arid Land,2018,10(2):292-303.
    [26] TAN S,WANG Q,ZHANG J,et al. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang,China[J]. Agricultural Water Management,2018,196:99-113.
    [27] RAN H,KANG S,LI F,et al. Performance of AquaCrop and SIMDualKc models in evapotranspiration partition-ing on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China[J].Agricultural Systems,2017,151:20-32.
    [28] DEB K,AGRAWAL S,PRATAP A,et al. A fast elitist non-dominated sorting genetic algorithm for multi-objec-tive optimization:NSGA-Ⅱ[C]//Parallel Problem Solving from Nature PPSN VI. Berlin:Springer,2000.
    [29] SRINIVAS N,DEB K. Multi-objective optimization using non-dominated sorting in genetic algorithms[J]. Evo-lutionary Computation,1994(2):221-248.
    [30]杨奇鹤,毛晓敏,杨健,等.不同灌水处理和覆膜对西北旱区农田水热状况和春小麦生长的影响研究[J].中国农村水利水电,2017(2):37-39.
    [31]杨文雄,杨长刚,王世红,等.甘肃省小麦生产技术发展现状及建议[J].中国种业,2017(10):14-18.
    [32]胡志桥,田霄鸿,张久东,等.石羊河流域主要作物的需水量及需水规律的研究[J].干旱地区农业研究,2011(3):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700