用户名: 密码: 验证码:
间接式超临界二氧化碳塔式太阳能热发电系统仿真优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation and optimization of solar thermal tower power system with indirect-heated supercritical CO_2 Brayton cycles
  • 作者:何欣欣 ; 薛志恒 ; 陈会勇 ; 王伟锋
  • 英文作者:HE Xinxin;XUE Zhiheng;CHEN Huiyong;WANG Weifeng;Xi'an Thermal Power Research Institute Co., Ltd.;
  • 关键词:超临界 ; 二氧化碳 ; 塔式 ; 太阳能热发电 ; 腔式吸热器 ; 参数优化
  • 英文关键词:supercritical;;carbon dioxide;;tower type;;solar energy thermal power generation;;cavity receiver;;parameter optimization
  • 中文刊名:RLFD
  • 英文刊名:Thermal Power Generation
  • 机构:西安热工研究院有限公司;
  • 出版日期:2019-04-02 13:50
  • 出版单位:热力发电
  • 年:2019
  • 期:v.48;No.392
  • 语种:中文;
  • 页:RLFD201907007
  • 页数:6
  • CN:07
  • ISSN:61-1111/TM
  • 分类号:59-64
摘要
本文建立了间接式超临界二氧化碳塔式太阳能热发电系统数学模型,对该系统在不同的透平入口温度、主压缩机出口压力以及循环压比下进行仿真,分析了全厂热效率的变化规律。结果表明:随着透平入口温度的升高,全厂热效率出现先增大后减小的规律,在750℃附近存在最佳透平入口温度;随着循环压比的增大,全厂热效率出现先增大后减小的规律,对于不同的主压缩机出口压力和透平出口温度均存在最佳循环压比。最后提出了该系统的2种参数优化方案,并给出主压缩机入口压力20~35 MPa、透平入口温度500~850℃范围内的参数优化值。
        The mathematic model for tower type solar thermal power generation system with indirect-heated supercritical CO_2 Brayton cycles was established. The system is simulated under conditions with different turbine inlet temperatures, main compressor outlet pressures and pressure ratios, and the variation law of thermal efficiency of the whole plant was analyzed. The results show that, along with the rising of the turbine inlet temperature, the thermal efficiency of the whole plant first increases and then decreases, and it would reach the maximum in the vicinity of 750 ℃. With an increase in the circulating pressure ratio, the thermal efficiency of the whole plant increases firstly and then decreases. There exists the optimal pressure ratio for different outlet pressures of the main compressor and different outlet temperatures of the turbine. Furthermore, two optimization proposals of the system were proposed, and the optimized parameter values are given: the main compressor inlet pressure of 20~35 MPa, and the turbine inlet temperature of 500~850 ℃.
引文
[1]杜尔顺,张宁,康重庆,等.太阳能光热发电并网运行及优化规划研究综述与展望[J].中国电机工程学报,2016,36(21):5765-5775.DU Ershun,ZHANG Ning,KANG Chongqing,et al.Reviews and prospects of the operation and planning optimization for grid integrated concentration solar power[J].Proceedings of the CSEE,2016,36(21):5765-5775.
    [2]周昊,裘闰超,李亚威.基于超临界CO2布雷顿再压缩循环的塔式太阳能光热系统关键参数的研究[J].中国电机工程学报,2018,38(15):4451-4458.ZHOU Hao,QIU Runchao,LI Yawei.Parameter analysis of solar power tower system driven by a recompression supercritical CO2 Brayton cycle[J].Proceedings of the CSEE,2018,38(15):4451-4458.
    [3]TURCHI C S,MA Z W,NEISES T,et al.Thermodynamic study of advanced supercritical carbon dioxide power cycles for high performance concentrating solar power systems[C]//Proceedings of the ASME 6th International Conference on Energy Sustainability Collocated with the ASME 10th International Conference on Fuel Cell Science,Engineering and Technology.San Diego,California,USA:ASME,2012:75-383.
    [4]IVERSON B D,CONBOY T M,PASCH J J.Supercritical CO2 Brayton cycles for solar-thermal energy[J].Applied Energy,2013,111(4):957-970.
    [5]MILANI D,LUU M T,MCNAUGHTON R,et al.Acomparative study of solar heliostat assisted supercritical CO2 recompression Brayton cycles:dynamic modeling and control strategies[J].The Journal of Supercritical Fluids,2017,120:113-124.
    [6]朱含慧,王坤,何雅玲.直接式S-CO2塔式太阳能热发电系统光-热-功-体化热力学分析[J].工程热物理学报,2017,38(10):2045-2053.ZHU Hanhui,WANG Kun,HE Yaling.Thermodynamics analysis of solar thermal power tower systems integrated with the direct-heated supercritical CO2 Brayton cycles[J].Journal of Engineering Thermophysics,2017,38(10):2045-2053.
    [7]陈渝楠,张一帆,刘文娟,等.超临界二氧化碳火力发电系统模拟研究[J].热力发电,2017,46(2):22-27.CHEN Yunan,ZHANG Yifan,LIU Wenjuan,et al.Simulation study on supercritical carbon dioxide thermal power system[J].Thermal Power Generation,2017,46(2):22-27.
    [8]吴毅,王佳莹,王明坤,等.基于超临界CO2布雷顿循环的塔式太阳能集热发电系统[J].西安交通大学学报,2016,50(5):108-113.WU Yi,WANG Jiaying,WANG Mingkun,et al.A towered solar thermal power plant based on supercritical CO2Brayton cycle[J].Journal of Xi’an Jiaotong University,2016,50(5):108-113.
    [9]ZHU G D,LIBBY C.Review and future perspective of central receiver design and performance[C]//Solarpaces:International Conference on Concentrating Solar Power&Chemical Energy Systems.AIP Publishing LLC,2017.
    [10]WILLIAMS D F.Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop[R].Oak Ridge:Oak Ridge National Laboratory,2006:13-16.
    [11]XIN L,WEIQIANG K,ZHIFENG W,et al.Thermal model and thermodynamic performance of molten salt cavity receiver[J].Renewable Energy,2010,35:981-988.
    [12]GARG P,KUMAR P,SRINIVASAN K.Supercritical carbon dioxide Brayton cycle for concentrated solar power[J].The Journal of Supercritical Fluids,2013,76:54-60.
    [13]SARKAR J,BHATTACHARYYA S.Optimization of recompression S-CO2 power cycle with reheating[J].Energy Convers Manage,2009,50(8):1939-1945.
    [14]PADILLA R V,TOO Y C S,BENITO R,et al.Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers[J].Applied Energy,2015,148:348-365.
    [15]XU C,WANG Z F,LI X,et al.Energy and exergy analysis of solar power tower plants[J].Applied Thermal Engineering,2011,31(17/18):3904-3913.
    [16]MARK O M,ERIC W L,MARCIA L H.The Refprop database for the thermophysical properties of refrigerants[C].2003 International Congress of Refrigeration.Washington D.C.:NIST,2003.
    [17]吴闯,王顺森,王兵兵,等.超临界二氧化碳布雷顿循环燃煤发电系统仿真研究[J].中国电机工程学报,2018,38(21):6360-6366.WU Chuang,WANG Shunsen,WANG Bingbing,et al.Simulation research on coal-fired power generation system using a supercritical carbon dioxide Brayton cycle[J].Proceedings of the CSEE,2018,38(21):6360-6366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700