基于统计过程控制方法的铝电解生产工艺优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Aluminum Electrolysis Production Process and Energy Efficiency by Statistical Process Control Method
  • 作者:陈婷 ; 康自华 ; 曹斌
  • 英文作者:CHEN Ting;KANG Zihua;CAO Bin;Guiyang Aluminium Magnesium Design and Research Institute Co., Ltd.;
  • 关键词:统计过程控制方法 ; 铝电解 ; 生产工艺 ; 优化 ; 节能增效
  • 英文关键词:statistical process control method;;aluminum electrolysis;;production process;;optimization;;energy efficiency
  • 中文刊名:YSYJ
  • 英文刊名:Nonferrous Metals Engineering & Research
  • 机构:贵阳铝镁设计研究院有限公司;
  • 出版日期:2018-06-25
  • 出版单位:有色冶金设计与研究
  • 年:2018
  • 期:v.39;No.181
  • 基金:贵州省科技重大专项计划“铝电解槽内衬用新型碳/碳复合材料整体成型应用研究”(黔科合重大专项字[2016]3012)
  • 语种:中文;
  • 页:YSYJ201803004
  • 页数:6
  • CN:03
  • ISSN:36-1111/TF
  • 分类号:18-23
摘要
高铝水平操作工艺尽管一定程度上降低了漏槽风险,却存在电解槽沉淀增多、炉底压降升高、侧部散热增加和能耗增加等问题。利用统计过程控制方法设计的氟化铝添加策略和调控电解槽热平衡方式,能够保障在降低铝水平、降低槽电压的同时保持电解生产稳定运行。研究结果表明,具有破损趋势的铝电解槽生产工艺经过优化后,槽温、分子比、氟化铝下料量、热波动幅度显著降低,电解槽更加稳定。4台试验槽与对比槽相比,电流效率提高1.29%,铝直流电耗减少93 k Wh/t。
        In this paper, In order to obtain a stable cell condition, to extend the life of the aluminum electrolytic cell, Electrolytic aluminium entarprises tends to use a high rnetal level operation. Although this process can reduces the leakage risk, there are some problems, such as the higher sludge formation, increase in CVD, and high dissipation from the sidewall requiring higher voltage to maintain heat balance.The addition strategy of aluminum fluoride and the method of controlling the heat balance of the cell designed by the statistical process control method.which can keep heat balance when the metal level is lowered and the voltage is lowered.The result shows that the optimization of the production process of aluminum reduction cell with breakage trend, the bath temperature,cryolite ratio, the amount of aluminum fluoride and thermal wave amplitude decreased significantly, and the cell was more stable.Compared with reference cell, the current efficiency of the test cell is increased by 1.29%, and the DC power consumption is reduced by 93 k Wh/t-Al.
引文
[1]杨晓东,史生文,周东方,等.600 k A超大容量铝电解槽技术研发[J].中国科技成果,2015(4):46-47.
    [2]Patel P,Hyland M,Hiltmann F.Influence of internal cathode structure on behavior during electrolysis part III:Wear behavior in graphitic materials[J].TMS Light Metals,2016,2006:1023-1028.
    [3]Welch B J,Hyland M M,James B J.Future materials requirements for the high-energy-intensity production of aluminum[J].JOM,2001,53(2):13.
    [4]Keller R.Alumina dissolution and sludge formation revisited[C]//TMS.Light Metals 2005.Warrendale:Minerals,Metals&Materials Soc,2005:147-150.
    [5]邱竹贤.预焙槽炼铝[M].北京:冶金工业出版社,2005.
    [6]廉迎泽.提高铝电解电流效率研究[D].长沙:中南大学,2006.
    [7]张杰,阳宪惠.多变量统计过程控制[M].北京:化学工业出版社,2000.
    [8]吴聪.统计过程控制方法及应用研究[D].泰安:山东大学,2012.
    [9]孙勇.统计过程控制方法在汽车配件行业的应用研究[D].武汉:华中科技大学,2005.
    [10]康自华,骆先庆,陈世月,等.利用SPC方法设计铝电解生产中氟化铝添加策略[J].轻金属,2016(8):27-33.
    [11]Croarkin C,Tobias P.NIST/SEMATECH e-Handbook of Statistical Methods[M].Gaithersburg:National Institute of Standards and Technology,2004.
    [12]Luo Xianqing,Chen Shiyue,Kang Zihua,et al.Optimisation of the Performance of Cathode Risk Pots[C]//ICSOBA.ICSOBA Conference.Quebec:ICSOBA,2016.
    [13]Kang Zihua,Luo Xianqing,Chen Shiyue,etal.Using SPC Method to Design an Aluminum Fluoride Addition Strategy for Aluminium Electrolysis[C]//ICSOBA.ICSOBA Conference Quebec:ICSOBA,2016.
    [14]Solheim A,Rolseth S,Skybakmoen E.Liquidus temperature and alumina solubility in the system Na3Al F6-Al F3-Li F-Ca F2-Mg F2[C]//TMS.Light Metals 1995.Warrendale:Minerals,Metals&Materials Soc,1995:451-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700