原子力显微镜表征不同炭黑表面活性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterizing the Surface Activity of Different Carbon Blacks by Atomic Force Microscopy
  • 作者:辜其隆 ; 龚勇 ; 陈建 ; 何刚 ; 代祖洋 ; 林小力 ; 刘莎
  • 英文作者:GU Qilong;GONG Yong;CHEN Jian;HE Gang;DAI Zuyang;LIN Xiaoli;LIU Sha;School of Materials Science and Engineering,Sichuan University of Science & Engineering;Sichuan Province Key Laboratory for Corrosion and Protection of Material;
  • 关键词:AFM ; 炭黑 ; 力曲线 ; 表面活性 ; 吸附力 ; 脱附力
  • 英文关键词:AFM;;carbon black;;force curve;;surface activity;;adsorptive force;;desorption force
  • 中文刊名:SCQX
  • 英文刊名:Journal of Sichuan University of Science & Engineering(Natural Science Edition)
  • 机构:四川理工学院材料科学与工程学院;材料腐蚀与防护四川省重点实验室;
  • 出版日期:2018-08-08
  • 出版单位:四川理工学院学报(自然科学版)
  • 年:2018
  • 期:v.31;No.146
  • 基金:国家自然科学基金面上项目(51572177);; 四川省科技厅科技支撑计划项目(2016GZ0224);四川省科技厅重大前言项目(2017JY0158);; 四川理工学院研究生创新基金项目(y2017041)
  • 语种:中文;
  • 页:SCQX201804001
  • 页数:6
  • CN:04
  • ISSN:51-1687/N
  • 分类号:6-11
摘要
利用原子力接触模式(AFM)对不同浓度的PVA溶液进行了形貌表征,再将喷雾炭黑、炭黑N774、N375和N234固定在PVA上,表征其形貌和做力曲线。结果表明,当PVA溶液的浓度为2 wt%时,在云母片上形成了均匀、平整的PVA膜;喷雾炭黑的尺寸比较大、分布区间为70 nm~100 nm,炭黑N774、N234和N375的尺寸分别为70 nm、30 nm和30 nm。喷雾炭黑和N375结构较高,聚集体分别呈乱麻状和树枝状。N234和N774分别具有最低和最高的吸附力,为0.176 nN和0.549 nN,N375和喷雾炭黑的吸附力分别为0.469 nN和0.339 nN;N234、N375、N774与喷雾炭黑的脱附力分别为7.102 nN、5.938 nN、3.174 nN与2.343 nN,其中N234的脱附力最高。四种炭黑表面活性次序为:N234>N375>N774>喷雾炭黑。喷雾炭黑表面的活性分布较为集中,其余三种炭黑则较为分散。
        Atomic force contact mode( AFM) was used to characterize the morphology of different concentrations of PVA solution. Spray carbon black,carbon black N774,N375,and N234 were then fixed on PVA to characterize their morphology and make force curve. The results showed that when the concentration of PVA solution was 2 wt%,a uniform and even PVA film was formed on the mica sheet. The size of the sprayed carbon black was relatively large with the distribution at 70 nm to100 nm,and that of carbon blacks N774,N234,and N375 were 70 nm,30 nm and 30 nm,respectively. The structure of spray carbon black as well as N375 was higher,and their aggregates were indistinct and dendritic,respectively. N234 and N774 had the lowest and the highest adsorptive forces of 0. 176 nN and 0. 549 nN,respectively,and those of N375 and sprayed carbon black were 0. 469 nN and 0. 339 nN,respectively. The surface desorption forces of N234,N375,N774 and the spray carbon black were of 7. 102 nN,5. 938 nN,3. 174 nN and 2. 343 nN,respectively,with that of N234 being the highest. The order of surface activity of the four carbon blacks was: N234 > N375 > N774 > sprayed carbon black. The surface activity distribution of the sprayed carbon black was more concentrated,and that of the other three types of carbon black were relatively dispersed.
引文
[1]范汝新.炭黑工业大国的建设历程-中国炭黑工业65周年发展概述(上)[J].中国橡胶,2016,32(2):21-25.
    [2]李炳炎.炭黑生产与应用手册[M].北京:化学工业出版社,2000.
    [3]朱永康.橡胶用补强炭黑发展的新动向[J].弹性体,2009,18(1):72-76.
    [4]李炳炎,朱兴玲,范汝新.中国炭黑原料油现状和趋势[C]//2004全国炭黑技术研讨会论文集.广西北海:中国化工学会,全国橡胶工业信息总站,2004:10-27.
    [5]吉田清彦,木洋.世界炭黑工业概况[J].炭黑工业,2002(1):32-35.
    [6]陈建,罗少伶,聂松,等.炭黑活性研究方法进展[J].四川理工学院学报:自然科学版,2016,29(1):1-6.
    [7]周洁.热解炭黑的表面特性及其资源化应用研究[D].杭州:浙江大学,2006.
    [8]李赓.再生炭黑橡胶补强性能的研究[D].杭州:浙江大学,2006.
    [9]吴召洪.用原子力显微镜研究炭黑表面活性[D].自贡:四川理工学院,2015.
    [10]陈建,崔汶静,谢纯,等.高结构炭黑表面活性的研究[C]//第十一届全国新型炭材料学术研讨会论文集,太原:中国科学院山西煤炭化学研究所,2013:283-294.
    [11]DONNET J B.Structure and reactivity of carbons:From carbon black to carbon composites[J].Carbon,1982,20(4):267-282.
    [12]PAPIRER E,LACROIX R,DONNET J B.Chemical modifications and surface properties of carbon blacks[J].Carbon,1996,34(12):1521-1529.
    [13]PAPIRER E,DENTZER J,LI S,et al.Surface groups on nitric aced oxidized carbon black samples determined by chemical and thermodesorption analyses[J].Carbon,1990,29(1):69-72.
    [14]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用[M].北京:化学工业出版社,2007:5-12.
    [15]杨序纲,杨潇.原子力显微术及其应用[M].北京:化学工业出版社,2012:3-16.
    [16]王更新.结合AFM和电化学方法直接测量单分子配位力取得突破性进展[J].材料工程,1993(10):38-40.
    [17]STANIMIROVA R D,GURKOV T D,KRAL-CHEVSKY P A,et al.Surface pressure and elasticity of hydrophobin HFBⅡlayers on the air-water interface:rheology versus structure detected by AFM imaging[J].Langmuir,2013,29(20):6053-6067.
    [18]MERKEL R,NASSOY P,LEUNG A,et al.Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy[J].Nature,1999,397(6714):50-53.
    [19]ZHU X,SIAMANTOURAS E,LIU K K,et al.Determination of work of adhesion of biological cell under AFM bead indentation[J].Journal of the Mechanical Behavior of Biomedical Materials,2016,56(5):77-86.
    [20]NIU T,CAO G.Power-law rheology characterization of biological cell properties under AFM indentation measurement[J].Rsc Advances,2014,4(55):29291-29299.
    [21]SMOLYAKOV G,PRUVOST S,CARDOSO L,et al.AFM peakforce QNM mode:evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites[J].Carbohydr Polym,2016,151:373-380.
    [22]PELLE F D,BATTISTA R D,VáZQUEZ L,et al.Press-transferred carbon black nanoparticles for class-selective antioxidant electrochemical detection[J].2017,9:29-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700