基于响应面法多自由度微机电陀螺的优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of multi-DOF micro-gyroscopes based on response surface methodology
  • 作者:郝淑英 ; 孟思 ; 张琪昌 ; 冯晶晶 ; 陈炜
  • 英文作者:HAO Shuying;MENG Si;ZHANG Qichang;FENG Jingjing;CHEN Wei;Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control, Tianjin University of Technology;National experimental teaching demonstration center of mechanical and electrical engineering, Tianjin University of Technology;Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin University;
  • 关键词:多自由度微机电陀螺 ; 灵敏度 ; 带宽 ; 特征提取 ; 响应面法
  • 英文关键词:multi-DOF vibratory gyroscopes;;sensitivity;;bandwidth;;dynamic characteristic extraction;;response surface methodology
  • 中文刊名:ZGXJ
  • 英文刊名:Journal of Chinese Inertial Technology
  • 机构:天津理工大学天津市先进机电系统设计与控制重点实验室;天津理工大学机电工程国家级实验教学示范中心;天津大学天津市非线性动力学与控制重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:中国惯性技术学报
  • 年:2019
  • 期:v.27
  • 基金:国家自然科学基金(11872044);; 国家重点研发计划(2018YFB0106200);; 国家自然科学青年基金(11602169)
  • 语种:中文;
  • 页:ZGXJ201901018
  • 页数:8
  • CN:01
  • ISSN:12-1222/O3
  • 分类号:119-126
摘要
为提高多自由度微机电陀螺的灵敏度及带宽的鲁棒性,提出了一种依据特征分析确定约束条件的新方法,即从参数限定的角度对结构参数对微机电陀螺动态性能的影响特征进行提取,以此为依据确定优化设计的约束条件,结合响应面法对多自由度微机电陀螺的灵敏度及带宽进行了优化设计。优化后灵敏度最高提升了19%,相应的带宽也提升了11%;带宽最高提升了28%,相应的灵敏度则提升了16%。结果表明了该优化方法的有效性,同时仿真分析结果也验证了优化分析结果的可靠性。
        In order to improve the sensitivity and bandwidth robustness of multi-DOF gyroscope, a new method for determining constraints based on feature analysis is proposed. The method extracts the structural parameters' influence on the dynamic performance of the micro-gyroscope from the perspective of parameter definition to determine the constraints of the optimal design. The sensitivity and bandwidth of multi-DOF gyroscope are optimized by feature extraction and the Response Surface Method(RSM). The optimized sensitivity is increased by up to 19%, the corresponding bandwidth is increased by 11%. The maximum bandwidth is increased by 28%, and the corresponding sensitivity is increased by 16%. The results show the effectiveness of the proposed optimization method, and the simulation analysis results also verify the reliability of the optimization analysis results.
引文
[1]He C,Zhao Q,Huang Q,et al.A MEMS vibratory gyroscope with real-time mode-matching and robust control for the sense mode[J].IEEE Sensors Journal,2015,15(4):2069-2077.
    [2]曹慧亮,李宏生,申冲,等.双质量硅微机械陀螺仪正交校正系统设计与测试[J].中国惯性技术学报,201523(4):544-549.Cao H,Li H,Shen C,et al.Design and test on quadrature error correction system of dual-mass silicon MEMSgyroscope[J].Journal of Chinese Inertial Technology,2015,23(2):544-549.
    [3]Wei J.How wearables intersect with the cloud and the internet of things[J].IEEE Transactions on Consumer Electronics Magazine,2014,3(3):53-56.
    [4]Yang C,Li H.Digital control system for the MEMStuning fork gyroscope based on synchronous integral demodulator[J].IEEE Sensors Journal,2015,15(10):5755-5764.
    [5]曹慧亮,李宏生,申冲,等.双质量硅微机械陀螺仪带宽拓展系统设计[J].中国惯性技术学报,2016,24(2):218-223.Cao H,Li H,Shen C,et al.Bandwidth expanding system design of dual-mass silicon MEMS gyroscope[J].Journal of Chinese Inertial Technology,2016,24(2):218-223.
    [6]张增平,张福学,张伟,等.无驱动微机械陀螺敏感元件模态分析[J].中国惯性技术学报,2014,22(5):655-659.Zhang Z,Zhang F,Zhang W,et al.Modal analysis on sensing element of no-driven micromechanical gyro[J].Journal of Chinese Inertial Technology,2014,22(5):655-659.
    [7]周浩,苏伟,唐海林,等.微机械陀螺结构的稳健优化设计[J].纳米技术与精密工程,2011,9(4):335-339.Zhou H,Su W,Tang H,et al.Robust optimization design for microgyroscope structure[J].Nanotechnology and Precision Engineering,2011,9(4):335-339.
    [8]张正福.音叉振动式微机械陀螺结构动态性能解析与健壮性设计[D].上海:上海交通大学,2007.Zhang Z.Dynamic performance analysis and robust design of a tuning fork vibratory micromachined gyroscope[D].Shanghai:Shanghai Jiao Tong University,2007.
    [9]Zhang T,Zhou B,Yin P et al.Optimal design of a center support quadruple mass gyroscope[J].Sensors,2016,16(5):613-629.
    [10]Boxenhom B,Greiff P.A vibratory micromechanical gyroscope[C]//AIAA Guidance,Navigation and Control Conference.2013:1033-1040.
    [11]Jain A,Gopal R.Design and fabrication of non-resonant micro-gyroscope[J].ISSS International Conference on Smart Materials,Structures and Systems.Bangalore,India,2014.
    [12]张印强,杨波,李靖,等.硅微阵列陀螺仪的仿真、设计与测试[J].传感技术学报,2015,25(1):29-32.Zhang Y,Yang B,Li J,et al.Simulation,design and test of silicon micro-gyroscope array[J].Chinese Journal of Sensors and Actuators,2015,25(1):29-32.
    [13]郝燕玲,刘博,周广涛.高敏感度微机械陀螺阵列的设计[J].华中科技大学学报,2014,42(3):42-46.Hao Y,Liu B,Zhou G.Design of a MEMS gyro-scope array with high sensitivity[J].Journal of Huazhong University of Science&Technology,2014,42(3):42-46.
    [14]Xia D,Kong L,Gao H.Design and analysis of a novel fully decoupled tri-axis linear vibratory gyroscope with matched modes[J].Sensors,2015,15(7):16929-16955.
    [15]Esmaeili A,Kupael M A,Faghihian H,et al.An adaptable broadband MEMS vibratory gyroscope by simultaneous optimization of and sensitivity parameters[J].Sensors and Actuators A,2014,206(3):132-137.
    [16]Wang W,Lv X,Sun F.Design of micromachined vibratory gyroscope with two degree-of-freedom drivemode and sense-mode[J].IEEE Sensors Journal,2012,12(7):2460-2464.
    [17]Ruqayyaha T I D,Jamala P,Alama M Z et al.Application of response surface methodology for protein enrichment of cassava peel as animal feed by the white-rot fungus Panus tigrinus M609RQY[J].Food Hydrocolloids,2014,42:298-303.
    [18]Yang P,Fang M,Liu Y.Optimization of a phase adjuster in a thermo-acoustic stirling engine using response surface methodology[J].Energy Procedia,2014,61:1772-1775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700