一种RP-3航空煤油的三组分替代燃料简化机理构建与验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Simplified Mechanism Model of Three Component Surrogate Fuels for RP-3 Aviation Kerosene and Its Verification
  • 作者:陈登炳 ; 刘云鹏 ; 方文 ; 李井华 ; 颜应文
  • 英文作者:CHEN Deng-bing;LIU Yun-peng;FANG Wen;LI Jing-hua;YAN Ying-wen;College of Energy and Power,Nanjing University of Aeronautics and Astronautics;
  • 关键词:三组分替代燃料 ; RP-3航空煤油 ; 点火延迟 ; 层流火焰速度 ; 简化机理 ; 预混预蒸发燃烧
  • 英文关键词:Three component surrogate fuel;;Aviation kerosene RP-3;;Ignition delay;;Laminar flame speed;;Simplified mechanism;;Pre-mixed pre-evaporation combustion
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:南京航空航天大学能源与动力学院;
  • 出版日期:2018-11-07 11:36
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.261
  • 基金:国家自然科学基金(51676097)
  • 语种:中文;
  • 页:TJJS201903026
  • 页数:8
  • CN:03
  • ISSN:11-1813/V
  • 分类号:217-224
摘要
对RP-3航空煤油三组分替代燃料(质量分数分别为73%的正十二烷、14.7%的1,3,5-三甲基环己烷和12.3%的正丙基苯)半详细化学反应动力学模型进行简化和验证,旨在获得可应用于工程计算且精度合理的三组分替代燃料简化机理。三组分替代燃料半详细化学反应动力学模型包含有257组分和874步基元反应。第一步采用直接关系图法(Directed relation graph,DRG)构建了109组分423步基元反应;第二步是在第一步的结果上采用基于误差传播的DRG方法 (Directed relation graph basedon error propagation,DRGEP)和计算奇异摄动法(Computational singular perturbation,CSP),构建了84组分271步基元反应;最后采用路径分析法在常压高温条件下分析其燃烧路径,对比详细机理和第二步的简化机理,去除不重要的反应路径(在本文工况中化学反应速率很小的基元反应)或者补入被前两步简化方法删减错的重要路径。最终获得的适合常压高温燃烧的三组分替代燃料简化机理为59组分和158步基元反应。结合RP-3煤油点火延迟时间和层流火焰速度等试验数据对三组分替代燃料简化机理进行了验证,结果表明,本文获得的三组分替代燃料简化机理数值计算结果与试验数据较吻合。最后,为了验证三组分替代燃料简化机理工程实用性,以本生灯预混燃烧火焰为物理模型,利用三组分替代燃料简化机理对以航空煤油为燃料的本生灯预混预蒸发燃烧进行了数值模拟,计算结果表明,该简化机理数值计算结果与试验数据吻合,且计算时间能在工程应用可接受范围内,因此说明本文获得简化机理组分和反应步数合理,计算精度较为准确。
        A detailed chemical reaction kinetics model of three-component surrogate fuel(73% n-dodecane,14.7% 1, 3, 5-3 methyl cyclohexane and 12.3% n-propylbenzene) for aviation kerosene RP-3 was simplified, and the simplified mechanism of three surrogate fuel was validated. The purpose of this paper is to obtain the simplified mechanism that can be used for engineering numerical simulation with acceptable accuracy. In the detailed chemical reaction kinetics model, 257 components and 874 elementary reactions are included. The first step, by using Directed relation graph(DRG), a mechanism consisting 109 components and 423 elementary reactions from the detailed model was obtained. Then based on the results of the first simplified step, the Directed relation graph based on error propagation(DRGEP) and Computational singular perturbation(CSP) were applied during the second simplified step, a 84-component and 271-elementary-reaction mechanism was obtained.Finally, the path analysis was applied to analyze its combustion path under the atmospheric and high temperature conditions, by removing the unimportant reaction paths or supplementing the important paths of the second simplified mechanism, the simplification mechanism of three-component surrogate fuel which includes 59 components and 158 elementary reactions was obtained. Experimental data of the ignition delay time and the laminar flame velocity for RP-3 kerosene were used to verify the simplified mechanism of the three-component fuel, the numerical results show that the results of the simplified mechanism of three component alternative fuel are in good agreement with the experimental data. In order to verify the engineering practicability of the three-component surrogate fuel simplification mechanism proposed in this paper, the pre-mixed pre-evaporation combustion flame of the Bunsen burner was used to as the physical model. The numerical results applied by the simplified mechanism are agree well with the experimental data, and at the same time, the computation time for the engineering application is within the acceptable range. Therefore, it is shown that the simplified mechanism could be used for engineering simulation and its accuracy is reasonable.
引文
[1]严传俊,范玮.燃烧学[M].西安:西北工业大学出版社,2005.
    [2]于维铭.航空煤油替代燃料火焰传播速度与反应动力学机理研究[D].北京:清华大学,2014.
    [3]Kundu K P,Deur J M.A Simplified Reaction Mechanism for Calculation of Emissions in Hydrocarbon(JetA)Combustion[R].AIAA 93-2341.
    [4]Wang T S.Thermophysics Characterization of Kerosene Combustion[J].Journal of Thermophysics and Heat Transfer,2001,15(2):140-147.
    [5]Patterson P M,Kyne A G,Pourkashanian M,et al.Combustion of Kerosene in Counter Flow Diffusion Flames[J].Journal of Propulsion and Power,1999,17(2):453-460.
    [6]Honnet S,Seshadri K,Niemann U,et al.A Surrogate Fuel for Kerosene[J].Proceeding of the Combustion Institute,2009,32(1):485-492.
    [7]Vovelle C,Delfau J L,Reuillon M.Formation of Aromatic Hydrocarbons in Decane and Kerosene Flames at Reduced Pressure[M].Berlin:Springer Series in Chemical Physics,1994.
    [8]Dagaut P,Ristori A,Bakali A E,et al.Experimental and Kinetic Modeling Study of the Oxidation of n-Propylbenzene[J].Fuel,2002,81(2):173-184.
    [9]Chitral kumar V,Puduppakkam K V,Modak A,et al.Detailed Chemical Kinetic Mechamism for Surrogates of Surrogate Jet Fuel[J].Combution and Flame,2011,158(3):434-445.
    [10]肖保国,杨顺华,赵慧勇,等.RP-3航空煤油燃烧的详细和简化化学动力学模型[J].航空动力学报,2010,25(9):1949-1955.
    [11]徐佳琪,郭俊江,刘爱科,等.RP-3替代燃料自点火燃烧机理构建及动力学模拟[J].物理化学学报,2015,31(4):643-652.
    [12]Montgomery C J,Cannon S M,Mawid M A,et al.Reduced Chemical Kinetic Mechanisms for JP-8 Combustion[R].AIAA 2002-0336.
    [13]Tang H C,Zhang C H,Li P,et al.Experimental Study of Autoignition Characteristics of Kerosene[J].Acta Physico-Chimica Sinica,2012,28(4):1-6.
    [14]Lu T F,Law C K.A Directed Relation Graph Method for Mechanism Reduction[J].Proceedings of the Combustion Institute,2005,30(1):1333-1341.
    [15]Pepiot-Desjardins P,Pitsch H.An Efficient Error Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms[J].Combustion and Flame,2008,154(1):67-81.
    [16]Lam S H.Using CSP to Understand Complex Chemical Kinetics[J].Combustion Science and Technology,1993,89(5-6):375-404.
    [17]Changhua Zhang,Bin Li Fan Rao,Ping Li,et al.AShock Tube Study of the Autoignition Characteristics of RP-3 Jet Fuel[J].Proceeding of the Combustion Institute,2015,35(3):3151-3158.
    [18]Strelkova I M,Kirillov I A,Potapkin B V,et al.Detailed and Reduced Mechanisms of Jet a Combustion at High Temperatures[J].Combustion Science and Technology,2008,180(10-11):1788-1802.
    [19]戴超,王亚军,颜应文,等.一种基于敏感性分析的RP-3替代燃料简化机理[J].南京航空航天大学学报,2014,47(4):579-587.
    [20]Yingwen YAN,Yunpeng LIU,Dong Di,et al.Simplified Chemical Reaction Mechanism for Surrogate Fuel of Aviation Kerosene and Its Verification[J].Energy&Fuels,2016,30(12):10847-10857.
    [21]Yunpeng LIU,Yingwen YAN,Chao DAI,et al.A Simplified Chemical Reaction Mechanism for Surrogate Fuel of Aviation Kerosene[J].Chemical Research in Chinese Universities,2017,33(2):274-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700