低压热丝化学气相沉积法快速合成1-2层石墨烯薄膜
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rapid synthesis of graphene film with 1-2 layers on Ni substrate by LPHFCVD
  • 作者:刘进 ; 吕媛媛 ; 张志勇 ; 闫军锋 ; 赵武 ; 贠江妮 ; 翟春雪
  • 英文作者:LIU Jin;L Yuanyuan;ZHANG Zhiyong;YAN Junfeng;ZHAO Wu;YUN Jiangni;ZHAI Chunxue;Institute of Microelectronic Technology/School of Information Science and Technology,Northwest University;
  • 关键词:石墨烯 ; 低压热丝化学气相沉积 ; 拉曼光谱 ; 缺陷
  • 英文关键词:Graphene;;LPHFCVD;;Raman spectrum;;defect
  • 中文刊名:XBDZ
  • 英文刊名:Journal of Northwest University(Natural Science Edition)
  • 机构:西北大学微电子研究所/信息科学与技术学院;
  • 出版日期:2017-04-25
  • 出版单位:西北大学学报(自然科学版)
  • 年:2017
  • 期:v.47;No.227
  • 基金:陕西自然科学基金研究重点基金资助项目(2014JZ2-003)
  • 语种:中文;
  • 页:XBDZ201702013
  • 页数:5
  • CN:02
  • ISSN:61-1072/N
  • 分类号:77-80+86
摘要
利用镍衬底独特的渗碳-析碳机制,分别引入混合气体氢气和乙炔,使用低压热丝化学气相沉积法(LPHFCVD),在镍衬底上生长石墨烯(Graphene)薄膜。通气时长分别为5s,60s,300s,极大地节省了时间和成本。制备的样品分别通过拉曼光谱(Raman),X光电子能谱(XPS),扫描电镜(SEM)等分析表征手段对其结构、形貌、缺陷等进行表征。拉曼光谱表明石墨烯薄膜的D,G,2D峰在不同温度、不同反应时间条件下不同的层数、缺陷密度和结晶质量,其中以950℃,5s的条件制备得到的石墨烯薄膜为1-2层,且缺陷极少,结晶质量很高。XPS的结果进一步确认了按照以上条件制备的石墨烯薄膜具有很高的结晶质量和很低的缺陷密度。SEM则显示了在镍衬底上制备石墨烯薄膜的形貌。
        Graphene is grown on the Ni substrate using its unique carburizing-precipitation mechanism by pumping in the mixture gas of H_2 and C_2H_2 in the CVD reaction chamber of low pressure hot filament. It takes the ventilation time of 5 seconds,1 min and 5 minutes,respectively,which greatly saves time and cost. The graphene samples prepared have been characterized by the Raman characteristic spectra,X-Ray Photoelectron spectra( XPS) and the scanning electron microscope( SEM). Raman scatting spectra shows that the D,G,2D peaks of graphene present different situation under different temperature,and reaction time,which reflects the preparation of graphene film at 950℃ for 5s with 1 ~ 2 layers and few defects. The XPS results further confirm that the prepared graphene has the highly crystal quality and low defect concentration. The SEM of the sample shows the shape of the graphene film based on the growth of nickel substrate.
引文
[1]周晨露,郑新亮,郑继明,等.一种基于石墨烯纳米带的半金属材料设计[J].西北大学学报:自然科学版,2014,44(2):201-205.
    [2]NOVOSELOV K S,AKG SV,MOROZOV D,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,360:666-609.
    [3]KORDATOS A,KELAIDIS N,GIAMINI S A,et al.AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh(1 1 1)and electronic structure characterization[J].Applied Surface Science,2016,369(30):251-256.
    [4]KWON B J,KIM J Y,CHOI S M,et al.Highly transparent and conducting graphene-embedded Zn O films with enhanced photoluminescence fabricated by aerosol synthesis[J].Nanotechnology,2014,25(8):085701.
    [5]Ill AKKIYA J T,RAJALAKSHMI P U,OOMMEN R.Nebulized spray pyrolysis:a new method for synthesis of graphene film and their characteristics[J].Surface and Coatings Technology,2016,307:65-72.
    [6]李毅,杨娟,陈祖磊,等.一步合成具有SERS性能的Au NPs/r GO复合粉体[J].西北大学学报:自然科学版,2016,46(2):207-212.
    [7]WANG P,WANG L,SUN Q,et al.Preparation and performance of Fe3O4@hydrophilic graphene composites with excellent Photo-Fenton activity for photocatalysis[J].Materials Letters,2016,183:61-64.
    [8]YAO W,LI Y,YAN D,et al.Fabrication and photocatalysis of Ti O2-graphene sandwich nanosheets with smooth surface and controlled thickness[J].Chemical Engineering Journal,2013,229:569-576.
    [9]JIANG J,DU J,WANG Q,et al.Enhanced field emission properties from graphene-Ti O2/DLC nanocomposite films prepared by ultraviolet-light assisted electrochemical deposition[J].Journal of Alloys and Compounds,2016,686:588-592.
    [10]LIU J,ZHANG Z,LV Y,et al.Synthesis and characterization of Zn O NWAs/graphene composites for enhanced optical and field emission performances[J].Composites Part B:Engineering,2016,99:366-372.
    [11]LEI Y,FANG C,XU J,et al.Enhanced photoelectric properties of Cd Se/graphene composites with various contents of graphene[J].Ceramics International,2016,42(4):5326-5330.
    [12]SONG X,WANG M,WEI D,et al.Enhanced photoelectrochemical perporties of graphene nanowalls-Cd S composite materials[J].Journal of Alloys and Compounds,2015,651:230-236.
    [13]FERRIGHI L,DI VALENTIN C.Oxygen reactivity on pure and B-doped graphene over crystalline Cu(111).Effects of the dopant and of the metal support[J].Surface Science,2015,634:68-75.
    [14]FU Z,ZHANG Y,YANG Z.Growth mechanism and controllable synthesis of graphene on Cu—Ni alloy surface in the initial growth stages[J].Physics Letters A,2015,379(20-21):1361-1365.
    [15]ZELLER P,HENβA K,WEINL M,et al.Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction[J].Surface Science,2016,653:143-152.
    [16]MARTA B,LEORDEAN C,ISTVAN T,et al.Efficient etching-free transfer of high quality,large-area CVD grown graphene onto polyvinyl alcohol films[J].Applied Surface Science,2016,363:613-618.
    [17]MALARD L M,PIMENTA M A,DRESSELHAUS G,et al.Raman spectroscopy in graphene[J].Physics Reports,2009,473(5-6):51-87.
    [18]GUPTA G,CHEN P J,et al.Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films[J].Nano Letters,2006,6:2667-2673.
    [19]HUANG B R,CHAN H W,JOU S,et al.Structure and field emission of graphene layers on top of silicon nanowire arrays[J].Applied Surface Science,2016,362:250-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700