Improved Na~+/K~+ Storage Properties of ReSe_2–Carbon Nanofibers Based on Graphene Modifications
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improved Na~+/K~+ Storage Properties of ReSe_2–Carbon Nanofibers Based on Graphene Modifications
  • 作者:Yusha ; Liao ; Changmiao ; Chen ; Dangui ; Yin ; Yong ; Cai ; Rensheng ; He ; Ming ; Zhang
  • 英文作者:Yusha Liao;Changmiao Chen;Dangui Yin;Yong Cai;Rensheng He;Ming Zhang;Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education,Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices,School of Physics and Electronics,Hunan University;
  • 英文关键词:Rhenium diselenide;;Carbon nanofiber;;Graphene;;Sodium-/potassium-ion batteries;;Full cell
  • 中文刊名:NANO
  • 英文刊名:纳微快报(英文)
  • 机构:Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education,Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices,School of Physics and Electronics,Hunan University;
  • 出版日期:2019-06-15
  • 出版单位:Nano-Micro Letters
  • 年:2019
  • 期:v.11
  • 基金:supported by the National Natural Science Foundation of China(Grants51772082,51574117,and 51804106);; the Research Projects of Degree and Graduate Education Teaching Reformation in Hunan Province(JG2018B031,JG2018A007);; the Natural Science Foundation of Hunan Province(2019JJ30002,2019JJ50061);; project funded by the China Postdoctoral Science Foundation(2017M610495,2018T110822)
  • 语种:英文;
  • 页:NANO201902004
  • 页数:13
  • CN:02
  • ISSN:31-2103/TB
  • 分类号:48-60
摘要
Rhenium diselenide(ReSe_2) has caused considerable concerns in the field of energy storage because the compound and its composites still suffer from low specific capacity and inferior cyclic stability.In this study,ReSe_2 nanoparticles encapsulated in carbon nanofibers were synthesized successfully with simple electrospinning and heat treatment.It was found that graphene modifications could affect considerably the microstructure and electrochemical properties of ReSe_2–carbon nanofibers.Accordingly,the modified compound maintained a capacity of 227 mAhg~(-1) after 500cycles at 200 mAg~(-1) for Na+storage,230 mAh g~(-1) after 200 cycles at 200 mAg~(-1),212 mAh g~(-1) after 150 cycles at 500 mAg~(-1) for K~+ storage,which corresponded to the capacity retention ratios of 89%,97%,and 86%,respectively.Even in Na+full cells,its capacity was maintained to 82% after 200 cycles at 1 C(117 mAg~(-1)).The superior stability of ReSe_2–carbon nanofibers benefitted from the extremely weak van der Waals interactions and large interlayer spacing of ReSe_2,in association with the role of graphene-modified carbon nanofibers,in terms of the shortening of electron/ion transport paths and the improvement of structural support.This study may provide a new route for a broadened range of applications of other rhenium-based compounds.
        Rhenium diselenide(ReSe_2) has caused considerable concerns in the field of energy storage because the compound and its composites still suffer from low specific capacity and inferior cyclic stability.In this study,ReSe_2 nanoparticles encapsulated in carbon nanofibers were synthesized successfully with simple electrospinning and heat treatment.It was found that graphene modifications could affect considerably the microstructure and electrochemical properties of ReSe_2–carbon nanofibers.Accordingly,the modified compound maintained a capacity of 227 mAhg~(-1) after 500cycles at 200 mAg~(-1) for Na+storage,230 mAh g~(-1) after 200 cycles at 200 mAg~(-1),212 mAh g~(-1) after 150 cycles at 500 mAg~(-1) for K~+ storage,which corresponded to the capacity retention ratios of 89%,97%,and 86%,respectively.Even in Na+full cells,its capacity was maintained to 82% after 200 cycles at 1 C(117 mAg~(-1)).The superior stability of ReSe_2–carbon nanofibers benefitted from the extremely weak van der Waals interactions and large interlayer spacing of ReSe_2,in association with the role of graphene-modified carbon nanofibers,in terms of the shortening of electron/ion transport paths and the improvement of structural support.This study may provide a new route for a broadened range of applications of other rhenium-based compounds.
引文
1.S.M.Lukic,J.Cao,R.C.Bansal,F.Rodriguez,A.Emadi,Energy storage systems for automotive applications.IEEETrans.Ind.Electron.55(6),2258-2267(2008).https://doi.org/10.1109/TIE.2008.91839 0
    2.B.Dunn,H.Kamath,J.-M.Tarascon,Electrical energy storage for the grid:a battery of choices.Science 334(6058),928-935(2011).https://doi.org/10.1126/scien ce.12127 41
    3.D.P.Dubal,O.Ayyad,V.Ruiz,P.Gomez-Romero,Hybrid energy storage:the merging of battery and supercapacitor chemistries.Chem.Soc.Rev.44(7),1777-1790(2015).https://doi.org/10.1039/C4CS0 0266K
    4.Z.Wang,L.Zhou,X.W.David Lou,Metal oxide hollow nanostructures for lithium-ion batteries.Adv.Mater.24(14),1903-1911(2012).https://doi.org/10.1002/adma.20120 0469
    5.Y.Ren,Z.Liu,F.Pourpoint,A.R.Armstrong,C.P.Grey,P.G.Bruce,Nanoparticulate TioO2(b):an anode for lithium-ion batteries.Angew.Chem.Int.Ed.51(9),2164-2167(2012).https://doi.org/10.1002/anie.20110 8300
    6.J.Y.Luo,W.J.Cui,P.He,Y.Y.Xia,Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.Nat.Chem.2(9),760-765(2010).https://doi.org/10.1038/nchem.763
    7.M.D.Slater,D.Kim,E.Lee,C.S.Johnson,Sodium-ion batteries.Adv.Funct.Mater.23(8),947-958(2013).https://doi.org/10.1002/adfm.20120 0691
    8.Y.Yan,Y.-X.Yin,Y.-G.Guo,L.-J.Wan,A sandwich-like hierarchically porous carbon/graphene composite as a highperformance anode material for sodium-ion batteries.Adv.Energy Mater.4(8),1301584(2014).https://doi.org/10.1002/aenm.20130 1584
    9.P.Senguttuvan,S.-D.Han,S.Kim,A.L.Lipson,S.Tepavcevic et al.,A high power rechargeable nonaqueous multivalent Zn/V2O5 battery.Adv.Energy Mater.6(24),1600826(2016).https://doi.org/10.1002/aenm.20160 0826
    10.C.Chen,Y.Yang,S.Ding,Z.Wei,X.Tang,P.Li,T.Wang,G.Cao,M.Zhang,S-doped carbon@TiO2 to store Li+/Na+with high capacity and long life-time.Energy Storage Mater.13,215-222(2018).https://doi.org/10.1016/j.ensm.2018.01.015
    11.Z.Jian,W.Luo,X.Ji,Carbon electrodes for k-ion batteries.J.Am.Chem.Soc.137(36),11566-11569(2015).https://doi.org/10.1021/jacs.5b068 09
    12.S.W.Kim,D.H.Seo,X.Ma,G.Ceder,K.Kang,Electrode materials for rechargeable sodium-ion batteries:potential alternatives to current lithium-ion batteries.Adv.Energy Mater.2(7),710-721(2012).https://doi.org/10.1002/aenm.20120 0026
    13.Y.Liu,F.Fan,J.Wang,Y.Liu,H.Chen et al.,In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers.Nano Lett.14(6),3445-3452(2014).https://doi.org/10.1021/nl500 970a
    14.W.Zhang,J.Mao,S.Li,Z.Chen,Z.Guo,Phosphorus-based alloy materials for advanced potassium-ion battery anode.J.Am.Chem.Soc.139(9),3316-3319(2017).https://doi.org/10.1021/jacs.6b121 85
    15.N.Recham,G.l.Rousse,M.T.Sougrati,J.-Nl.Chotard,C.Frayret et al.,Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes.Chem.Mater.24(22),4363-4370(2012).https://doi.org/10.1021/cm302 428w
    16.W.Wang,J.Zhou,Z.Wang,L.Zhao,P.Li,Y.Yang,C.Yang,H.Huang,S.Guo,Short-range order in mesoporous carbon boosts potassium-ion battery performance.Adv.Energy Mater.8(5),1701648(2018).https://doi.org/10.1002/aenm.201701648
    17.Y.Marcus,Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents:part 3-standard potentials of selected electrodes.Pure Appl.Chem.57(8),1129-1132(1985).https://doi.org/10.1002/aenm.20170 1648
    18.Z.Jian,Z.Xing,C.Bommier,Z.Li,X.Ji,Hard carbon microspheres:potassium-ion anode versus sodium-ion anode.Adv.Energy Mater.6(3),1501874(2016).https://doi.org/10.1002/aenm.20150 1874
    19.Y.Dong,Z.S.Wu,S.Zheng,X.Wang,J.Qin,S.Wang,X.Shi,X.Bao,Ti3C2mxene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities.ACS Nano 11(5),4792-4800(2017).https://doi.org/10.1021/acsna no.7b011 65
    20.S.Zhang,B.V.R.Chowdari,Z.Wen,J.Jin,J.Yang,Constructing highly oriented configuration by few-layer MoS2:towards high-performance lithium-ion batteries and hydrogen evolution reactions.ACS Nano 9(12),12464-12472(2015).https://doi.org/10.1021/acsna no.5b058 91
    21.Q.H.Wang,K.Kalantarzadeh,A.Kis,J.N.Coleman,M.S.Strano,Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.Nat.Nanotech.7(11),699-712(2012).https://doi.org/10.1038/nnano.2012.193
    22.X.Meng,K.He,D.Su,X.Zhang,C.Sun et al.,Gallium sulfide-single-walled carbon nanotube composites:highperformance anodes for lithium-ion batteries.Adv.Funct.Mater.24(34),5435-5442(2014).https://doi.org/10.1002/adfm.20140 1002
    23.D.Wolverson,S.Crampin,A.S.Kazemi,A.Ilie,S.J.Bending,Raman spectra of monolayer,few-layer,and bulk ReSe2:an anisotropic layered semiconductor.ACS Nano 8(11),11154-11164(2014).https://doi.org/10.1021/nn505 3926
    24.Q.Zhang,S.Tan,R.G.Mendes,Z.Sun,Y.Chen et al.,Extremely weak van der waals coupling in vertical ReS2nanowalls for high-current-density lithium-ion batteries.Adv.Mater.28(13),2616-2623(2016).https://doi.org/10.1002/adma.20150 5498
    25.M.Hafeez,L.Gan,H.Li,Y.Ma,T.Zhai,Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2flakes for anisotropic raman property and optoelectronic application.Adv.Mater.28(37),8296-8301(2016).https://doi.org/10.1002/adma.20160 1977
    26.S.Yang,C.Wang,H.Sahin,H.Chen,Y.Li et al.,Tuning the optical,magnetic,and electrical properties of ReSe2by nanoscale strain engineering.Nano Lett.15(3),1660-1666(2015).https://doi.org/10.1021/nl504 276u
    27.C.Fang,G.Wiegers,C.Haas,R.De Groot,Electronic structures of,and in the real and the hypothetical undistorted structures.J.Phys.:Condense.Matter.9(21),4411(1997).https://doi.org/10.1088/0953-8984/9/21/008
    28.C.Ho,Y.Huang,K.Tiong,In-plane anisotropy of the optical and electrical properties of ReS2and ReSe2layered crystals.J.Alloys Compds.317,222-226(2001).https://doi.org/10.1016/S0925-8388(00)01332-3
    29.Z.Huang,Z.Chen,S.Ding,C.Chen,M.Zhang,Multi-protection from nanochannels and graphene of SnSb-graphenecarbon composites ensuring high properties for potassiumion batteries.Solid State Ionics 324,267-275(2018).https://doi.org/10.1016/j.ssi.2018.07.019
    30.Q.Wang,C.Guo,Y.Zhu,J.He,H.Wang,Reduced graphene oxide-wrapped FeS2composite as anode for highperformance sodium-ion batteries.Nano-Micro Lett.10(2),30(2017).https://doi.org/10.1007/s4082 0-017-0183-z
    31.J.Liang,C.Yuan,H.Li,K.Fan,Z.Wei,H.Sun,J.Ma,Growth of SnO2nanoflowers on N-doped carbon nanofibers as anode for Li-and Na-ion batteries.NanoMicro Lett.10(2),21(2017).https://doi.org/10.1007/s40820-017-0172-2
    32.K.Tang,L.Fu,R.J.White,L.Yu,M.M.Titirici,M.Antonietti,J.Maier,Hollow carbon nanospheres with superior rate capability for sodium-based batteries.Adv.Energy Mater.2(7),873-877(2012).https://doi.org/10.1002/aenm.201100691
    33.J.Lu,C.Nan,L.Li,Q.Peng,Y.Li,Flexible SnS nanobelts:facile synthesis,formation mechanism and application in Li-ion batteries.Nano Res.6(1),55-64(2013).https://doi.org/10.1002/aenm.20110 0691
    34.T.Yang,Y.Liu,M.Zhang,Improving the electrochemical properties of Cr-SnO2 by multi-protecting method using graphene and carbon-coating.Solid State Ionics 308,1-7(2017).https://doi.org/10.1016/j.ssi.2017.05.011
    35.M.Zhang,F.Yan,X.Tang,Q.Li,T.Wang,G.Cao,Flexible CoO-graphene-carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability.J.Mater.Chem.A 2(16),5890-5897(2014).https://doi.org/10.1039/C4TA0 0311J
    36.X.Zhang,X.Fan,C.Yan,H.Li,Y.Zhu,X.Li,L.Yu,Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide.ACS Appl.Mater.Interfaces.4(3),1543-1552(2012).https://doi.org/10.1021/am201 757v
    37.F.Zhang,C.Xia,J.Zhu,B.Ahmed,H.Liang,D.B.Velusamy,U.Schwingenschl鰃l,H.N.Alshareef,SnSe22D anodes for advanced sodium ion batteries.Adv.Energy Mater.6(22),1601188(2016).https://doi.org/10.1002/aenm.20160 1188
    38.G.Wang,J.Yang,J.Park,X.Gou,B.Wang,H.Liu,J.Yao,Facile synthesis and characterization of graphene nanosheets.J.Phys.Chem.C 112(22),8192-8195(2008).https://doi.org/10.1021/jp710 931h
    39.Z.Ali,T.Tang,X.Huang,Y.Wang,M.Asif,Y.Hou,Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium ion batteries.Energy Storage Mater.13,19-28(2018).https://doi.org/10.1016/j.ensm.2017.12.014
    40.Y.Huang,H.Lu,H.Gu,J.Fu,S.Mo,C.Wei,Y.E.Miao,T.Liu,A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution.Nanoscale 7(44),18595-18602(2015).https://doi.org/10.1039/C5NR0 5739F
    41.M.Mao,C.Cui,M.Wu,M.Zhang,T.Gao et al.,Flexible ReS2nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali(Li,Na,K)ion battery.Nano Energy 45,346-352(2018).https://doi.org/10.1016/j.nanoe n.2018.01.001
    42.Z.Li,Y.Chen,Z.Jian,H.Jiang,J.J.Razink,W.F.Stickle,J.C.Neuefeind,X.Ji,Defective hard carbon anode for Na-ion batteries.Chem.Mater.30(14),4536-4542(2018).https://doi.org/10.1021/acs.chemm ater.8b006 45
    43.G.Zhang,J.Zhu,W.Zeng,S.Hou,F.Gong,F.Li,C.C.Li,H.Duan,Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries.Nano Energy 9,61-70(2014).https://doi.org/10.1016/j.nanoe n.2014.06.030
    44.J.Gao,L.Li,J.Tan,H.Sun,B.Li,J.C.Idrobo,C.V.Singh,T.M.Lu,N.Koratkar,Vertically oriented arrays of ReS2nanosheets for electrochemical energy storage and electrocatalysis.Nano Lett.16(6),3780-3787(2016).https://doi.org/10.1021/acs.nanol ett.6b011 80
    45.B.Jariwala,D.Voiry,A.Jindal,B.A.Chalke,R.Bapat,A.Thamizhavel,M.Chhowalla,M.Deshmukh,A.Bhattacharya,Synthesis and characterization of ReS2and ReSe2layered chalcogenide single crystals.Chem.Mater.28(10),3352-3359(2016).https://doi.org/10.1021/acs.chemm ater.6b003 64
    46.F.Qi,Y.Chen,B.Zheng,J.He,Q.Li et al.,3D chrysanthemumlike ReS2microspheres composed of curly few-layered nanosheets with enhanced electrochemical properties for lithium-ion batteries.J.Mater.Sci.52(7),3622-3629(2016).https://doi.org/10.1007/s1085 3-016-0500-9
    47.Y.Liu,H.Kang,L.Jiao,C.Chen,K.Cao,Y.Wang,H.Yuan,Exfoliated-SnS2 restacked on graphene as a highcapacity,high-rate,and long-cycle life anode for sodium ion batteries.Nanoscale 7(4),1325-1332(2015).https://doi.org/10.1039/C4NR0 5106H
    48.N.Zhang,Y.Liu,Y.Lu,X.Han,F.Cheng,J.Chen,Spherical nano-Sb@C composite as a high-rate and ultrastable anode material for sodium-ion batteries.Nano Res.8(10),3384-3393(2015).https://doi.org/10.1007/s12274-015-0838-3
    49.X.Cao,Y.Shi,W.Shi,X.Rui,Q.Yan,J.Kong,H.Zhang,Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithiumion batteries.Small 9(20),3433-3438(2013).https://doi.org/10.1002/smll.20120 2697
    50.F.Qi,J.He,Y.Chen,B.Zheng,Q.Li et al.,Few-layered ReS2nanosheets grown on carbon nanotubes:a highly efficient anode for high-performance lithium-ion batteries.Chem.Eng.J.315,10-17(2017).https://doi.org/10.1016/j.cej.2017.01.004
    51.X.Zhou,L.J.Wan,Y.G.Guo,Binding SnO2nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries.Adv.Mater.25(15),2152-2157(2013).https://doi.org/10.1002/adma.20130 0071
    52.J.Li,S.Xiong,Y.Liu,Z.Ju,Y.Qian,High electrochemical performance of monodisperse NiCo2O4mesoporous microspheres as an anode material for Li-ion batteries.ACSAppl.Mater.Interfaces 5(3),981-988(2013).https://doi.org/10.1021/am302 6294
    53.C.Chen,Y.Yang,X.Tang,R.Qiu,S.Wang,G.Cao,M.Zhang,Graphene-encapsulated FeS2in carbon fibers as high reversible anodes for Na+/K+batteries in a wide temperature range.Small(2019).https://doi.org/10.1002/smll.20180 4740
    54.H.Park,J.Kwon,H.Choi,D.Shin,T.Song,X.W.D.Lou,Unusual Na(+)ion intercalation/deintercalation in metal-rich Cu1.8Sfor Na-ion batteries.ACS Nano 12(3),2827-2837(2018).https://doi.org/10.1021/acsna no.8b001 18
    55.Z.T.Shi,W.Kang,J.Xu,L.L.Sun,C.Wu et al.,In situ carbondoped Mo(Se0.85S0.15)2 hierarchical nanotubes as stable anodes for high-performance sodium-ion batteries.Small11(42),5667-5674(2015).https://doi.org/10.1002/smll.201501360
    56.Y.V.Lim,Y.Wang,D.Kong,L.Guo,J.I.Wong,L.K.Ang,H.Y.Yang,Cubic-shaped WS2nanopetals on a prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries.J.Mater.Chem.A 5(21),10406-10415(2017).https://doi.org/10.1039/C7TA0 1821E
    57.X.Xiong,W.Luo,X.Hu,C.Chen,L.Qie,D.Hou,Y.Huang,Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries.Sci.Rep.5,9254(2015).https://doi.org/10.1038/srep09254
    58.H.Wang,X.Lan,D.Jiang,Y.Zhang,H.Zhong,Z.Zhang,Y.Jiang,Sodium storage and transport properties in pyrolysis synthesized MoSe2nanoplates for high performance sodiumion batteries.J.Power Sources 283,187-194(2015).https://doi.org/10.1016/j.jpows our.2015.02.096
    59.K.Zhang,M.Park,L.Zhou,G.-H.Lee,W.Li,Y.-M.Kang,J.Chen,Urchin-like CoSe2as a high-performance anode material for sodium-ion batteries.Adv.Funct.Mater.26(37),6728-6735(2016).https://doi.org/10.1002/adfm.20160 2608
    60.C.Zhu,K.Song,P.A.van Aken,J.Maier,Y.Yu,Carboncoated Na3V2(PO4)3 embedded in porous carbon matrix:an ultrafast Na-storage cathode with the potential of outperforming Li cathodes.Nano Lett.14(4),2175-2180(2014).https://doi.org/10.1002/adfm.20160 2608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700