低温液氮贮箱增压及排气流量控制方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control method of pressurization and venting flow rate in cryogenic tank
  • 作者:周振君 ; 雷刚 ; 王天祥 ; 轩志勇
  • 英文作者:ZHOU Zhenjun;LEI Gang;WANG Tianxiang;XUAN Zhiyong;State Key Laboratory of Technologies in Aerospace Cryogenic Propellants,Beijing Special Engineering Design and Research Institute;Research and Development Center,China Academy of Launch Vehicle Technology,China Aerospace Science and Technology Corporation;
  • 关键词:低温贮箱 ; 运行模式 ; 压力控制 ; 效能 ; 排气
  • 英文关键词:cryogenic tank;;run model;;pressure control;;efficiency;;venting
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:北京特种工程设计研究院航天低温推进剂技术国家重点实验室;中国航天科技集团有限公司中国运载火箭技术研究院研究发展中心;
  • 出版日期:2018-05-21 11:48
  • 出版单位:航空动力学报
  • 年:2018
  • 期:v.33
  • 语种:中文;
  • 页:HKDI201805029
  • 页数:7
  • CN:05
  • ISSN:11-2297/V
  • 分类号:248-254
摘要
在对以液氮为工质的低温贮箱进行热分析的基础上推导了增压速率计算模型,并通过两种增压工况进行了验证。主要开展了直排模式、排气模式及并行模式下的气枕压力及蒸气排气流量的对比实验,通过后两者模式下的蒸气排放质量与直接排放相比,分析了压力控制带内单循环各个模式下热力排气系统(TVS)的效能,结果表明:采用低温蒸气节流的并行模式在蒸气排放质量和气枕降压速率上具有优于其他模式的明显优势,气相并行模式比直排模式质量减少97%。
        The model of pressurization rate in cryogenic tank with liquid nitrogen as the working medium was deduced from thermal analysis of the tank,two working conditions in experiment were set up to verify the model.Then experiment was mainly carried out contrastively in direct venting mode,venting mode and parallel mode to measure ullage pressure and venting rate of vapor in the storage tank,the masses of venting vapor of three models were compared,the TVS(thermodynamic venting system)efficiency of different models within pressure control range during single cycle was analyzed.Results of experiment showed that the vapor parallel model had obvious advantages on mass of venting vapor and depressurization rate of ullage than other models,and the venting mass of vapor in parallel model could reduce 97%than that in venting.
引文
[1]CHATO D J.Cryogenic technology development for explorations missions[R].Nevada,USA:the 45th AIAA Aerospace Sciences Meeting and Exhibit,2007.
    [2]PANZARELLA C,PLACHTA D,KASSEMI M.Pressure control of large cryogenic tanks in microgravity[J].Cryogenics,2004,44(6):475-483.
    [3]LUSBY B S,MIRANDA B M,JACOB C.Cryogenic propellant feed system analytical tool development[R].Diego,CA,USA:AIAA/ASME/SAE/ASEE 47th Joint Propulsion Conference and Exhibit,2001.
    [4]胡伟峰,申麟,杨建民,等.低温推进剂长时间在轨的蒸发量控制技术进展[J].导弹与航天运载技术,2009,304(6):28-34.HU Weifeng,SHEN Lin,YANG Jianmin,et al.Progress of study on transpiration control technology for orbit longterm applied cryogenic propellant[J].Missiles and Space Vehicles,2009,304(6):28-34.(in Chinese)
    [5]颜露,黄永华,吴静怡,等.低温推进剂在轨储存热力排气系统TVS研究进展[J].低温与超导,2014,43(2):5-13.YAN Lu,HUANG Yonghua,WU Jingyi,et al.Development of thermodynamic venting system technology for cryogenic propellant storage on orbit.[J].Cryogenics and Superconductivity,2014,43(2):5-13.(in Chinese)
    [6]VAN OVERBEKE T J.Thermodynamic vent system test in a low earth orbit simulation[R].NASA/TM-2004-213193,2004.
    [7]PAPELL S S,SAIYED N H,NYLAND T W.Acquisition and correlation of cryogenic nitrogen mass flow data through a multiple orifice Joule-Thomson device[R].NASA/TM-1990-103121,1990.
    [8]STARK J A,BLANT M H.Cryogenic zero-gravity prototype vent system[R].Convair Report GDC(General Dynamics Corp)-DDB67,1967.
    [9]CANDY E C.Design of thermodynamic vent/screen baffle cryogenic storage system[J].Engineering Notes,1975,12(8):501-502.
    [10]TAYLOR W J,HONKONEN S C,WILLIAM G E,et al.COOLANT:a computer program for evaluating the thermodynamic performance of orbital cryogen storage facilities[R].Reno,Nevada,USA:the 29th Aerospace Sciences Meeting,1991.
    [11]TAYLOR W J.COOLANT:The cryogenic on-orbit liquid analytical tool user's manual volume1[R].GDSS(General Dynamics Space Systems)-CRAD-88-005A,1989.
    [12]LIN C S,VAN DRESAR N T,HASAN M M.Pressure control analysis of cryogenic storage system[J].Journal of Propulsion and Power,2004,20(3):480-485.
    [13]NGUYEN H.Zero-g thermodynamic venting system(TVS)performance prediction program[R].NASA-CR-193982,1994.
    [14]FLACHBART R,HASTINGS L J,HEDAYAT A,et al.Thermodynamics vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J].Cryogenics,2008,48(5):217-222.
    [15]冶文莲,王丽红,王田刚,等.低温制冷机与ZBO存储系统耦合数值模拟[J].低温与超导,2013,41(8):19-23.YE Wenlian,WANG Lihong,WANG Tiangang,et al.Numerical simulation of cryocooler and zero boil-off storage system coupling[J].Cryogenics and Superconductivity,2013,41(8):19-23.(in Chinese)
    [16]胡伟峰,申麟,彭小波,等.低温推进剂长时间在轨的蒸发量控制关键技术分析[J].低温工程,2011,181(3):59-66.HU Weifeng,SHEN Lin,PENG Xiaobo,et al.Key technology analysis of boil-off control study on cryogenic propellant long-term application on orbit[J].Cryogenics,2011,181(3):59-66.(in Chinese)
    [17]王磊,厉彦忠,马原,等.长期在轨贮存低温推进剂过冷度获取方案研究[J].航空动力学报,2015,30(11):2794-2802.WANG Lei,LI Yanzhong,MA Yuan,et al.Investigation on acquisition schemes of cryogenic propellant subcooling for long-term on-orbit storage[J].Journal of Aerospace Power,2015,30(11):2794-2802.(in Chinese)
    [18]LIU Zhan,LI Yanzhong,ZHOU Ke.Thermal analysis of double-pipe heat exchanger in thermodynamic vent system[J].Energy Conversion and Management,2016,126:837-849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700