非均匀热流对热力排气系统自增压及排气损失影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect on self-pressurization and mass loss of thermodynamic vent system by non-uniform heat flux
  • 作者:陈忠灿 ; 汪彬 ; 李鹏 ; 孙培杰 ; 蒋文兵 ; 黄永华
  • 英文作者:CHEN Zhongcan;WANG Bin;LI Peng;SUN Peijie;JIANG Wenbing;HUANG Yonghua;Institute of Refrigeration and Cryogenics,Shanghai Jiao Tong University;Shanghai Aerospace System Engineering Institute;
  • 关键词:推进剂贮存 ; 相变 ; 热力排气 ; 非均匀热流
  • 英文关键词:propellant storage;;phase change;;thermodynamic vent;;non-uniform heat flux
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:上海交通大学制冷与低温工程研究所;上海宇航系统工程研究所;
  • 出版日期:2017-09-30 11:08
  • 出版单位:哈尔滨工业大学学报
  • 年:2018
  • 期:v.50
  • 基金:国家自然科学基金(51676118);; 上海航天科技创新基金(SAST2017-017);; 航天先进技术联合研究中心项目(USCAST2016-32);; 载人航天领域预先研究概念创新项目(17630505)
  • 语种:中文;
  • 页:HEBX201808019
  • 页数:6
  • CN:08
  • ISSN:23-1235/T
  • 分类号:114-119
摘要
热力排气系统(TVS)是通过流体混合与节流换热排气双重作用实现低温推进剂在轨长期贮存的一种有效的压力控制技术.为深入研究推进剂贮箱在轨过程中非均匀受热时热力排气系统的控压特性,在工作于室温温区的TVS模拟装置上,以R141b为气液相变贮存介质,研究非均匀热流(仅气相受热、仅液相受热、气液一侧同时受热)对TVS作用下的贮箱增压特性及排气损失的影响.对比不同部位受热时,贮箱的增压速率、TVS运行特性和排放损失.结果表明,仅贮箱气相区受热时,贮箱升压速率最快,TVS启动频率最高,排放损失最大;仅贮箱液相区受热时,贮箱升压速率最慢,TVS启动频率最低,排放损失最小,相比仅气相区受热分别减少了42%,29%和33%.综合考虑贮箱的增压速率、流体热分层和排气损失,在空间微重力环境下,贮箱内壁面宜进行亲液处理或采用毛细结构来避免气枕空间的直接受热.
        Thermodynamic vent system( TVS) is deemed as an efficient pressure control technique for long-term on-orbit storage of cryogenic propellants through fluid mixing and a combination of throttling and heat exchanging before venting. To conduct further study on the performance of tank pressure control by TVS under non-uniform heat flux,the effect of non-uniform heat flux( vapor heating only,liquid heating only and one side wall heating for both vapor and liquid) on self-pressurization characteristics and mass loss has been investigated experimentally on a TVS simulator,which works at room temperature and with R141 b as the working fluid. The tank pressure rising rate,TVS operation performance,and vent mass loss of different heating condition were compared in detail. The results showed that under the condition of vapor heating mode,the rising rate of the tank pressure is the fastest,the TVS operation frequency and vent mass loss are the highest. However,under the condition of liquid heating mode,the rising rate of the tank pressure is the slowest,the TVS operation frequency and vent mass loss are the lowest,which decreased by 42%,29% and 33%,respectively,compared with the liquid heating mode. Considering the overall effect by the pressure rising rate,the thermal stratification of the fluid and the vent mass loss,the internal wall surface of the tank is better to have hydrophilic treatment or to integrate capillary structures to avoid direct heating of the ullage in micro-gravity environment.
引文
[1]HASTINGS L J,FLACHBART R H,MARTIN J J,et al.Spray bar zero-gravity vent system for on-orbit liquid hydrogen[R].212926,Alabama:NASA/TM,2003.
    [2]HEDAYAT A,HASTINGS L J,FLACHBART R H.Test data analysis of a spray bar zero-gravity liquid hydrogen vent system for upper stages[C]//AIP Conference Proceedings.AIP,2004,710:1171–1178.DOI:10.1063/1.1774803.
    [3]HEDAYAT A,BAILEY J,HASTINGS L,et al.Thermodynamic venting system(TVS)modeling and comparison with liquid hydrogen test data[C]//39thAIAA/ASME/SAE/ASEE/Joint Propulsion Conference and Exhibit.Huntsville:AIAA,2003.DOI:10.2514/6.2003-4450.
    [4]FLACHBART R,HASTINGS L,MARTIN J.Testing of a spray bar zero gravity cryogenic vent system for upper stages[C]//39thAIAA/ASME/SAE/ASEE/Joint Propulsion Conference and Exhibit.Los Angeles:AIAA,1999.DOI:10.2514/6.1999-2175.
    [5]HEDAYAT A,NELSON S L,HASTING L J,et al.Liquid nitrogen(oxygen simulant)thermodynamic vent system test data analysis[C]//AIP Conference Proceedings.AIP,2006,823:232–239.DOI:10.1063/1.2202421.
    [6]FLACHBART R H,HASTINGS L J,HEDAYAT A,et al.Testing of a spray-bar thermodynamic vent system in liquid nitrogen[C]//AIP Conference Proceedings.AIP,2006,823:240–247.DOI:10.1063/1.2202422.
    [7]FLACHBART R H,HASTINGS L J,HEDAYAT A,et al.Testing the effects of helium pressurant on thermodynamic vent system performance with liquid hydrogen[C]//AIP Conference Proceedings.AIP,1483:1482–1490.DOI:10.1063/1.2908510.
    [8]HASTINGS L J,BOLSHINSKIY L G,HEDAYAT A,et al.Liquid methane testing with a large-scale spray bar thermodynamic vent system[R].218197,Washington:NASA/TP,2014.
    [9]FLACHBART R H,HASTINGS L J,HEDAYAT A,et al.Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J].Cryogenics,2008,48(5/6):217–222.DOI:10.1016/j.cryogenics.2008.03.011.
    [10]MORAN M E.Cryogenic fluid storage technology development:Recent and planned efforts at NASA[R].215514,Ohio:NASA/TM,2009.
    [11]VANOVERBEKE T.Thermodynamic vent system test in low earth orbit simulation[C]//40thAIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Fort Lauderdale:AIAA,2004.DOI:10.2514/6.2004-3838.
    [12]THIBAULT J P,CORRE C,DEMEURE L,et al.Thermodynamic control systems for cryogenic propellant storage during long missions[C]//Proceedings of the ASME 2014 4thJoint US-European Fluids Engineering Division Summer Meeting.Chicago:ASME,2014.DOI:10.1115/FEDSM2014-22217.
    [13]MER S,THIBAULT J P,CORRE C.Active insulation technique applied to the experimental analysis of a thermodynamic control system for cryogenic propellant storage[J].Journal of Thermal Science and Engineering Applications,2016,8(2):021024.DOI:10.1115/1.4032761.
    [14]胡伟峰,申麟,彭小波,等.低温推进剂长时间在轨的蒸发量控制关键技术分析[J].低温工程,2011(3):59–66.DOI:10.3969/j.issn.1000-6516.2011.03.013.HU Weifeng,SHEN Lin,PENG Xiaobo,et al.Key technology analysis of boil-foo control study on cryogenic propellant long-term application on orbit[J].Cryogenics,2011(3):59-66.DOI:10.3969/j.issn.1000-6516.2011.03.013.
    [15]李鹏,孙培杰,包轶颖,等.低温推进剂长期在轨储存技术研究概述[J].载人航天,2012,18(1):30–36.DOI:10.3969/j.issn.1674-5825.2012.01.006.LI Peng,SUN Peijie,BAO Yiying,et al.Cryogenic propellant long-term storage on orbit technology overview[J].Manned Spaceflight,2012,18(1):30-36.DOI:10.3969/j.issn.1674-5825.2012.01.006.
    [16]朱洪来,孙沂昆,张阿莉,等.低温推进剂在轨贮存与管理技术研究[J].载人航天,2015,21(1):13–18.DOI:10.3969/j.issn.1674-5825.2015.01.003.ZHU Honglai,SUN Yikun,ZHANG Ali,et al.Research on onorbit storage and management technology of cryogenic propellant[J].Manned Spaceflight,2015,21(1):13-18.DOI:10.3969/j.issn.1674-5825.2015.01.003.
    [17]颜露,黄永华,吴静怡,等.低温推进剂在轨储存热力排气系统TVS研究进展[J].低温与超导,2015,43(2):5–13.DOI:10.16711/j.1001-7100.2015.02.008.YAN Lu,HUANG Yonghua,WU Jingyi,et al.Development of thermodynamic venting system technology for cryogenic propellant storage on orbit[J].Cryogenics&Superconductivity,2015,43(2):5-13.DOI:10.16711/j.1001-7100.2015.02.008.
    [18]刘展,厉彦忠,王磊,等.低温推进剂长期在轨压力管理技术研究进展[J].宇航学报,2014,35(3):254–261.DOI:10.3873/j.issn.1000-1328.2014.03.002.LIU Zhan,LI Yanzhong,WANG Lei,et al.Progress of study on longterm in-orbit pressure management technique for cryogenic propellant[J].Journal of Astronautics,2014,35(3):254-261.DOI:10.3873/j.issn.1000-1328.2014.03.002.
    [19]马原,厉彦忠,王磊,等.低温燃料贮箱热力排气系统优化分析与性能研究[J].低温与超导,2014,42(7):10–15.DOI:10.16711/j.1001-7100.2014.07.006.MA Yuan,LI Yanzhong,WANG Lei,et al.Optimized analysis and performance study on thermodynamic vent system in cryogenic fuel tank[J].Cryogenics&Superconductivity,2014,42(7):10-15.DOI:10.16711/j.1001-7100.2014.07.006.
    [20]LIU Z,LI Y,ZHOU K.Thermal analysis of double-pipe heat exchanger in thermodynamic ventsystem[J].Energy Conversion and Management,2016,126:837–849.DOI:10.1016/j.enconman.2016.08.065.
    [21]周振君,雷刚,王天祥,等.TVS系统低温液体节流数值模拟研究[J].低温与超导,2015,43(5):4–6.DOI:10.16711/j.1001-7100.2016.08.003.ZHOU Zhenjun,LEI Gang,WANG Tianxiang,et al.Investigation on Joule-Thomson effect of the cryogenic propellants in thermodynamic vent system[J].Cryogenics&Superconductivity,2015,43(5):4–6.DOI:10.16711/j.1001-7100.2016.08.003.
    [22]汪彬,黄永华,吴静怡,等.液氢储箱热力排气系统建模及控压特性[J].化工学报,2016,67(S2):20–25.DOI:10.11949/j.issn.0438-1157.20161347.WANG Bin,HUANG Yonghua,WU Jingyi,et al.Modeling and pressure control characteristics of thermodynamic venting system in a liquid hydrogen storage tank[J].Journal of Chemical Industry and Engineering,2016,67(S2):20–25.DOI:10.11949/j.issn.0438-1157.20161347.
    [23]陈忠灿,李鹏,孙培杰,等.工作于室温温区的热力排气模拟与增压测试[J].上海交通大学学报,2017,51(7):8–15.DOI:10.16183/j.cnki.jsjtu.2017.08.008.CHEN Zhongcan,LI Peng,SUN Peijie,et al.Simulation of a thermodynamic vent system working at room temperature and its preliminary pressurization testing[J].Journal of Shanghai Jiao Tong University,2017,51(7):8–15.DOI:10.16183/j.cnki.jsjtu.2017.08.008.
    [24]陈忠灿,黄永华,汪彬,等.热负荷对R141b热力排气系统自增压特性及排气损失的影响[J].化工学报,2016,67(10):4047–4054.DOI:10.11949/j.issn.0438-1157.20160613.CHEN Zhongcan,HUANG Yonghua,WANG Bin,et al.Effect on self-pressurization characteristics and mass loss of thermodynamic vent system for refrigeration R141b by heat load[J].Journal of Chemical industry and Engineering,2016,67(10):4047–4054.DOI:10.11949/j.issn.0438-1157.20160613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700