充注率及压力控制带对热力排气系统性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Filling Ratio and Pressure Control Band on Thermodynamic Vent System Performance
  • 作者:陈忠灿 ; 秦旭进 ; 李鹏 ; 孙培杰 ; 汪彬 ; 黄永华
  • 英文作者:CHEN Zhongcan;QIN Xujin;LI Peng;SUN Peijie;WANG Bin;HUANG Yonghua;Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University;Aerospace System Engineering Shanghai;
  • 关键词:推进剂贮存 ; 相变 ; 热力排气 ; 充注率 ; 压力控制带
  • 英文关键词:Propellant storage;;Phase change;;Thermodynamic vent;;Fill level;;Pressure control band
  • 中文刊名:ZLJS
  • 英文刊名:Chinese Journal of Refrigeration Technology
  • 机构:上海交通大学制冷与低温工程研究所;上海宇航系统工程研究所;
  • 出版日期:2018-06-15
  • 出版单位:制冷技术
  • 年:2018
  • 期:v.38;No.162
  • 基金:国家自然科学基金(No.51676118);; 航天先进技术联合研究中心技术创新项目(No.USCAST2016-32)
  • 语种:中文;
  • 页:ZLJS201803001
  • 页数:7
  • CN:03
  • ISSN:31-1492/TB
  • 分类号:5-11
摘要
热力排气系统是通过流体混合与节流换热排气双重作用实现低温推进剂在轨长期贮存的一种有效的压力控制技术。本研究搭建了以R141b为气液相变存储介质的室温温区热力排气系统模拟装置,进行了介质充注率分别为35%、50%、65%和压力控制带分别为(80~85)kPa、(80~90)kPa、(80~95)kPa的贮箱压力控制实验研究,获得了充注率及压力带对热力排气系统作用下贮箱增压特性和排气损失的影响规律。研究结果表明,充注率越大,排气损失越大;随着压力控制带宽度的增加,排气损失先减小后增大。上述结果对今后液氮、液氧等低温工质的热力排气研究具有指导作用。
        Thermodynamic vent system(TVS) is deemed as an efficient pressure control technique for long-term on-orbit storage of cryogenic propellants by fluid mixing and a combination of throttling and heat exchanging before venting. The effects of fill level(35%, 50%, 65%) and pressure control band(80~85 kPa, 80~90 kPa, 80~95 kPa) on pressurization characteristics and mass loss were investigated on a simulator of TVS, which works at room temperature with R141 b as the phase-change working substance. The test results show that the mass loss increases with the increase of fill level. The mass loss decreases firstly and then increases with the increase of the width pressure control band. These results can be used as a guide for the investigation of TVS using cryogenic liquid(such as liquid oxygen or liquid nitrogen) as working fluid.
引文
[1]张天平.空间低温流体贮存的压力控制技术进展[J].真空与低温,2006,12(3):125-131.
    [2]KUMAR S P,PRASAD B V S S S,VENKATARATHNAM G.Influence of surface evaporation on stratification in liquid hydrogen tanks of different aspect ratios[J].International Journal of Hydrogen Energy,2007,32(12):1954-1960.
    [3]王崇愿,张华,王子龙.储热水箱分层性能指标的研究进展[J].制冷技术,2016,36(4):47-51.
    [4]林津,何玲玲,朱荣元,等.新型温度分层式水蓄冷装置研制及应用[J].制冷技术,2006,26(4):15-17.
    [5]HASTINGS L,TUCKER S,FLACHBART R.Marshall space flight center in-space cryogenic fluid management program overview[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Tucson,Arizona:AIAA,2005.
    [6]HEDAYAT A,HASTINGS L J,FLACHBART R H.Test data analysis of a spray bar zero-gravity liquid hydrogen vent system for upper stages[C]//AIP Conference Proceedings.AIP,2004:1171-1178.
    [7]HEDAYAT A,BAILEY J,HASTINGS L,et al.Thermodynamic venting system(TVS)modeling and comparison with liquid hydrogen test data[C]//39th AIAA/ASME/SAE/ASEE/Joint Propulsion Conference and Exhibit.Huntsville:AIAA,2003.
    [8]FLACHBART R,HASTINGS L,MARTIN J.Testing of a spray bar zero gravity cryogenic vent system for upper stages[C]//39th AIAA/ASME/SAE/ASEE/Joint Propulsion Conference and Exhibit.Los Angeles:AIAA,1999.
    [9]HEDAYAT A,NELSON S L,HASTING L J,et al.Liquid nitrogen(oxygen simulant)thermodynamic vent system test data analysis[C]//AIP Conference Proceedings.AIP,2006:232-239.
    [10]FLACHBART R H,HASTINGS L J,HEDAYAT A,et al.Testing of a spray-bar thermodynamic vent system in liquid nitrogen[C]//AIP Conference Proceedings.AIP,2006:240-247.
    [11]FLACHBART R H,HASTINGS L J,HEDAYAT A,et al.Testing the effects of helium pressurant on thermodynamic vent system performance with liquid hydrogen[C]//AIP Conference Proceedings.AIP,2008:1482-1490.
    [12]HASTINGS L J,BOLSHINSKIY L G,HEDAYAT A,et al.Liquid methane testing with a large-scale spray bar thermodynamic vent system[R].Washington D.C.:NASA,2014.
    [13]FLACHBART R H,HASTINGS L J,HEDAYAT A,et al.Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J].Cryogenics,2008,48(5-6):217-222.
    [14]MORAN M E.Cryogenic fluid storage technology development:recent and planned efforts at NASA[R].NASA/TM-215514,2009.
    [15]VANOVERBEKE T.Thermodynamic vent system test in low earth orbit simulation[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Fort Lauderdale,Florida:AIAA,2004.
    [16]THIBAULT J P,CORRE C,DEMEURE L,et al.Thermodynamic control systems for cryogenic propellant storage during long missions[C]//Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting.Chicago:ASME,2014.
    [17]MER S,THIBAULT J P,CORRE C.Active insulation technique applied to the experimental analysis of a thermodynamic control system for cryogenic propellant storage[J].Journal of Thermal Science and Engineering Applications,2016,8(2):21-24.
    [18]胡伟峰,申麟,彭小波,等.低温推进剂长时间在轨的蒸发量控制关键技术分析[J].低温工程,2011(3):59-66.
    [19]李鹏,孙培杰,包轶颖,等.低温推进剂长期在轨储存技术研究概述[J].载人航天,2012,18(1):30-36.
    [20]朱洪来,孙沂昆,张阿莉,等.低温推进剂在轨贮存与管理技术研究[J].载人航天,2015,21(1):13-18.
    [21]颜露,黄永华,吴静怡,等.低温推进剂在轨储存热力排气系统TVS研究进展[J].低温与超导,2015,43(2):5-13.
    [22]刘展,厉彦忠,王磊,等.低温推进剂长期在轨压力管理技术研究进展[J].宇航学报,2014,35(3):254-261.
    [23]马原,厉彦忠,王磊,等.低温燃料贮箱热力排气系统优化分析与性能研究[J].低温与超导,2014,42(7):10-15.
    [24]LIU Z,LI Y,ZHOU K.Thermal analysis of double-pipe heat exchanger in thermodynamic vent system[J].Energy Conversion and Management,2016,126:837-849.
    [25]汪彬,黄永华,吴静怡,等.液氢贮箱热力排气系统建模及控压特性[J].化工学报,2016,67(S2):20-25.
    [26]陈忠灿,李鹏,孙培杰,等.工作于室温温区的热力排气模拟与增压测试[J].上海交通大学学报,2017,51(7):8-15.
    [27]陈忠灿,黄永华,汪彬,等.热负荷对R141b热力排气系统自增压特性及排气损失的影响[J].化工学报,2016,67(10):4047-4054.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700