双曲冷却塔结构抗震加固方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seismic retrofit method of hyperbolic cooling tower structure
  • 作者:周长东 ; 王朋国 ; 张许 ; 田苗旺
  • 英文作者:Zhou Chang-dong;Wang Peng-guo;Zhang Xu;Tian Miao-wang;School of Civil Engineering,Beijing Jiaotong University;
  • 关键词:钢筋混凝土冷却塔 ; 抗震加固 ; 易损性 ; 倒塌概率 ; 损伤指标 ; 增量动力分析
  • 英文关键词:RC cooling tower;;seismic retrofit;;vulnerability;;collapse probability;;damage index;;incremental dynamic analysis
  • 中文刊名:GCKZ
  • 英文刊名:Earthquake Resistant Engineering and Retrofitting
  • 机构:北京交通大学土木建筑工程学院;
  • 出版日期:2019-06-05
  • 出版单位:工程抗震与加固改造
  • 年:2019
  • 期:v.41;No.190
  • 基金:国家自然科学基金面上项目(51678039,51478033)
  • 语种:中文;
  • 页:GCKZ201903020
  • 页数:8
  • CN:03
  • ISSN:11-5260/P
  • 分类号:133-140
摘要
人字支柱是RC双曲冷却塔结构的薄弱部位,在大震作用下,会产生较为严重的破坏。为了提高RC双曲冷却塔的抗震能力,本文选用4种方案对该结构进行加固,并通过有限元分析得到各方案下冷却塔结构的地震易损性曲线及顶点位移包络线。采用ABAQUS软件建立分析模型,选择合理的地震动记录对结构进行增量动力分析。选取材料应变和地面峰值加速度PGA作为结构地震需求参数和强度参数并依次定义了四个极限状态。得到各方案下结构的易损性曲线和倒塌概率曲线,在此基础上得到了各方案下结构的抗倒塌安全储备系数CMR。分析结果表明:4种加固方案对减弱结构损伤都具有一定的作用,其中增设橡胶支座的效果最为显著。
        The herringbone pillars of RC cooling tower structure are weak constructional elements which will be severely damaged under strong earthquake. To improve its seismic resistance,four retrofit methods are selected to strengthen the cooling tower structure. The vulnerability curves and top displacement envelopes of the structure are obtained by each retrofit method through finite element analysis.The software ABAQUS is selected to establish analysis model. A ranges of reasonable ground motion records are selected to perform incremental dynamic analysis on the structure. Material strain and peak ground acceleration( PGA) are respectively selected as engineering demand parameter and intensity measure and then four limit states are defined according to them. The seismic vulnerability curves and collapse probability curves under each retrofit method are obtained based on the incremental dynamic analysis. Then the anti-collapse safety reserve coefficient CMR with each retrofit method of the structure is obtained. The analysis results show that all of the four selected retrofit methods can reduce the damage of the structure and among which adding rubber bearings at the bottom of the structure is the best one.
引文
[1]杨勋,杨沈,韩淼.钢支撑加固既有钢筋混凝土结构的方法概述[J].福州大学学报:自然科学版,2013(4):451-455Yang Xun,Yang Shen,Han Miao.Measures and analysis of steel braces reinforcing in existing reinforced concrete structure[J].Journal of Fuzhou University:Natural Science Edition,2013(4):451-455(in Chinese)
    [2]Vamvatsikos D,Cornell C A.Incremental dynamic analysis[J].Earthquake Engineering&Structural Dynamics,2002,31(3):491-514
    [3]周长东,王朋国,田苗旺,等.多维地震下钢筋混凝土双曲线冷却塔结构易损性分析[J].振动与冲击,2017,36(23):106-113,151Zhou Chang-dong,Wang Peng-guo,Tian Miao-wang,et al.Seismic vulnerability analysis of RC hyperbolic cooling tower under multi-dimensional earthquakes[J].Journal of Vibration and Shock,2017,36(23):106-113,151(in Chinese)
    [4]魏锟.一种新型橡胶支座的力学性能研究[D].开封:河南大学,2011Wei Kun.Research on mechanical property of new type rubber isolated bearing[D].Kaifeng:Henan University,2011(in Chinese)
    [5]刘萌,王青春,王国权.橡胶Mooney-Rivlin模型中材料常数的确定[J].橡胶工业,2011,58(4):241-245Liu Meng,Wang Qing-chun,Wang Guo-quan.Determination of material constants in rubber MooneyRivlin model[J].China Rubber Industry,2011,58(4):241-245(in Chinese)
    [6]陈火红,祁鹏.MSC.Patran/Marc培训教程和实例[M].北京:科学出版社,2004Chen Huo-hong,Qi Peng.MSC.Patran/Marc training tutorials and examples[M].Beijing:Science Press,2004(in Chinese)
    [7]吴文朋,李立峰,王连华,等.基于IDA的高墩大跨桥梁地震易损性分析[J].地震工程与工程振动,2012,32(3):117-123Wu Wen-peng,Li Li-feng,Wang Lian-hua,et al.Evaluation of seismic vulnerability of high-pier longspan bridge using incremental dynamic analysis[J].Earthquake Engineering and Engineering Vibration,2012,32(3):117-123(in Chinese)
    [8]焦驰宇.基于性能的大跨斜拉桥地震易损性分析[D].上海:同济大学,2008Jiao Chi-yu.Seismic vulnerability analysis of big span cable-stayed bridge based on performance[D].Shanghai:Tongji University,2008(in Chinese)
    [9]周光鑫.超高层建筑地震动强度指标适用性研究[D].重庆大学,2015Zhou Guang-xin.Study on applicability of ground motion intensity measures for seismic design of super high-rise buildings[D].Chongqing University,2015(in Chinese)
    [10]Padgett J E,Nielson B G,DesRoches R.Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J].Earthquake Engineering and Structural Dynamics,2008,37(5):711-726
    [11]GB/T 24335-2009,建(构)筑物地震破坏等级划分[S]GB/T 24335-2009,Classification of earthquake damage to buildings and special structures[S](in Chinese)
    [12]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003Guo Zhen-hai,Shi Xu-dong.Reinforced concrete theory and analysis[M].Beijing:Tsinghua University Press,2003(in Chinese)
    [13]Priestley M J N.Displacement-based seismic assessment of reinforced concrete buildings[J].Journal of Earthquake Engineering,1997,1(1):157-192
    [14]GB 50010-2010,混凝土结构设计规范[S]GB 50010-2010,Code for design of concrete structures[S](in Chinese)
    [15]ACI 318,Building code requirements for structural concrete(ACI318-99)and commentary(ACI318R-99)[S].American Concrete Institute,1999
    [16]European Prestandard,ENV1992,European code 2:Design of concrete structures,European Committee for Standardization[S],1992
    [17]Hoshikuma J,Priestley M J N.Flexural behavior of circular hollow columns with a single layer of reinforcement under seismic loading[R].SSRP-2000/13
    [18]韩强,周雨龙,杜修力.钢筋混凝土矩形空心桥墩抗震性能[J].工程力学,2015,32(3):28-40Han Qiang,Zhou Yu-long,Du Xiu-li.Seismic performance of reinforced concrete rectangular hollow bridge columns[J].Engineering Mechanics,2015,32(3):28-40(in Chinese)
    [19]罗文文,李英民,韩军,等.不同倒塌判定准则对评价RC框架结构抗倒塌能力的影响[J].土木工程学报,2014,(S2):241-246Luo Wen-wen,Li Ying-min,Han Jun,et al.Study on the effect of different collapse criteria on evaluating the collapse-resistant capacity of RC frames[J].China Civil Engineering Journal,2014,47,(S2):241-246(in Chinese)
    [20]ATC-63,Quantification of building seismic performance factors[S].Applied Technology Council,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700