组织演变对UNS N08825合金耐晶间腐蚀性能影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of microstructure evolution on intergranular corrosion resistance of UNS N08825 alloy
  • 作者:孙敏 ; 马天军
  • 英文作者:SUN Min;MA Tian-jun;Research Institute,Baoshan Iron and Steel Co Ltd;
  • 关键词:UNS ; N08825耐蚀合金 ; 晶间腐蚀 ; 组织演变 ; 析出相
  • 英文关键词:UNS N08825 corrosion resistant alloy;;intergranular corrosion;;microstructure evolution;;precipitate
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:宝钢股份研究院;
  • 出版日期:2019-06-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.228
  • 语种:中文;
  • 页:JSCL201906019
  • 页数:7
  • CN:06
  • ISSN:11-4545/TG
  • 分类号:161-167
摘要
采用硝酸浸泡法、电化学快速评价DL-EPR方法研究了组织演变对耐蚀合金UNS N08825耐晶间腐蚀性能的影响,以及析出相的数量及分布和析出相的回溶对其腐蚀速率的影响,并借助光学显微镜、扫描电镜分析了析出相的组织成分和试验后的腐蚀形貌。结果表明:UNS N08825合金的析出相主要以M_(23)C_6型碳化物为主,晶界上析出碳化物是其耐晶间腐蚀性能降低的主要因素;固溶处理能有效修复UNS N08825合金晶界贫Cr区,改善其耐晶间腐蚀性能。另外,电化学快速评价DL-EPR方法与传统的硝酸浸泡法的趋势一致,是一种有效的评价方法。
        The effect of microstructure evolution on intergranular corrosion resistance of corrosion resistant alloy UNS N08825 was studied by means of nitric acid immersion method and electrochemical rapid evaluation of DL-EPR method,and the effect of the amount and distribution of precipitates and the re-solution of precipitated phase on corrosion rate of the UNS N08825 alloy was studied. The composition of the precipitates and the corrosion morphology of the alloy after the test were investigated by means of optical microscope and scanning electron microscopy(SEM). The results show that the precipitated phase of the UNS N08825 alloy is mainly composed of M_(23)C_6 type carbides, and the precipitation of carbides in the grain boundaries is the main factor to decrease the intergranular corrosion resistance of the alloy, and the solution treatment can effectively repair the poor Cr region in the grain boundary of the UNS N08825 alloy, which can improve its intergranular corrosion resistance. The trend based on the electrochemical rapid evaluation of DL-EPR method is consistent with that of the traditional nitric acid immersion method. It is an effective evaluation method.
引文
[1] 杨俊峰,范芳雄,李墨,等.Incoloy825合金晶间腐蚀原因分析[J].材料开发与应用,2009,24(4):26-30.YANG Jun-feng,FAN Fang-xiong,LI Mo,et al.Intergranular corrosion cause analysis of Incoloy825[J].Development and Application of Materials,2009,24(4):26-30.
    [2] 杨俊峰,范芳雄.825合金热加工过程相变化规律研究[J].材料开发与应用,2015,30(3):53-60.YANG Jun-feng,FAN Fang-xiong.Study on the law of precipitation during hot working of alloy 825[J].Development and Application of Materials,2015,30(3):53-60.
    [3] 徐学利,王纯,毕宗岳,等.Incoloy825合金TIG和PAW焊接接头耐晶间腐蚀性能的对比[J].机械工程材料,2015,39(9):68-72.XU Xue-li,WANG Chun,BI Zong-yue,et al.Comparison of intergranular corrosion resistance of TIG and PAW welded joints of incoloy825 alloy[J].Materials for Mechanical Engineering,2015,39(9):68-72.
    [4] 李杰,杨俊峰,孙兵兵.825合金在高温高压H2S/CO2环境中的应力腐蚀研究[J].热加工工艺,2014,43(22):90-93.LI Jie,YANG Jun-feng,SUN Bing-bing.Study of stress corrosion in environment of high temperature and pressure H2S/CO2 on 825 alloy[J].Hot Working Technology,2014,43(22):90-93.
    [5] 戈磊,陈长风,郑树启,等.高温高压H2S/CO2环境中镍基合金825的腐蚀行为[J].腐蚀与防护,2009,30(10):708-712.GE Lei,CHEN Chang-feng,ZHENG Shu-qi,et al.Corrosion behavior of nickel based alloy 825 in high temperature and high pressure H2S/CO2 environments[J].Corrosion and Protection,2009,30(10):708-712.
    [6] 邵羽,王宝顺,张杰,等.825合金热挤压管中碳化物的析出与回溶行为[J].热加工工艺,2013,42(4):202-206.SHAO Yu,WANG Bao-shun,ZHANG Jie,et al.Precipitation and dissolution of carbide in hot extruded pipe of 825 alloy[J].Hot Working Technology,2013,42(4):202-206.
    [7] 冯勇,何德良,龚德胜,等.国产825合金的耐腐蚀性能研究[J].中国腐蚀与防护学报,2013,33(2):164-170.FENG Yong,HE De-liang,GONG De-sheng,et al.Corrosion resistance properties of domestic 825 alloy[J].Journal of Chinese Society for Corrosion and Protection,2013,33(2):164-170.
    [8] 蔡晓文,戈磊,于浩波,等.镍基合金825在元素硫环境中的局部腐蚀特征[J].材料科学与工程学报,2010,28(2):226-231.CAI Xiao-wen,GE Lei,YU Hao-bo,et al.Localized corrosion characteristics of nickel based alloy 825 in sulfur deposition environments[J].Journal of Materials Science and Engineering,2010,28(2):226-231.
    [9] Raymond E L.Mechanisms of sensitization and stablization of Incoloy Nickel-iorn-chromium alloy 825[J].Corrosion-NACE,1967,24:180-185.
    [10] 郭婧,耿志宇,董建新,等.镍基耐蚀825合金的组织特征及热力学计算[J].稀有金属材料与工程,2012,41(11):1929-1934.GUO Jing,GENG Zhi-yu,DONG Jian-xin,et al.Microstructure characteristics and thermodynamic calculation of incoloy 825[J].Rare Metal Materials and Engineering,2012,41(11):1929-1934.
    [11] 洪慧敏,张珂,金传伟.不同温度固溶后Incoloy825合金的显微组织与性能[J].机械工程材料,2016,41(8):23-26.HONG Hui-min,ZHANG Ke,JIN Chuan-wei,et al.Microstructure and properties of incoloy 825 alloy after solution at different yemperatures[J].Materials for Mechanical Engineering,2016,41(8):23-26.
    [12] Pan Y M,Dunn D S,Cragnolino G A,et al.Grain boundary chemistry and intergraular corrosion in alloy 825[J].Metallurgical and Materials Transaction A,2000,31(4):1163-1173.
    [13] Li X G,Zhang D W,Liu Z Y,et al.Share corrosion data[J].Nature,2015,527,441-442.
    [14] 张根元,吴晴飞,覃瑞森,等.贫铬区演化对奥氏体不锈钢晶间腐蚀影响[J].材料热处理学报,2013,34(s2):148-153.ZHANG Gen-yuan,WU Qing-fei,QIN Rui-sen,et al.Effect of Cr-depleted zone evolution on intergranular corrosion of austenitic stainless steel[J].Transactions of Materials and Heat Treatment,2013,34(s2):148-153.
    [15] Gong J,Jiang Y M,Deng B,et al.Evaluation of intergranualar corrosion susceptibility of UNS S31803 duplex stainless steel with an optimized double loop electrochemical potentiokinetic reactivation method[J].Electrochimica Acta,2010,55:5077-5083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700