基于流固耦合的刷式密封泄漏特性理论与实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theory and experiment on the leakage characteristics of brush seals based on fluid-structure interaction
  • 作者:孙丹 ; 丁海洋 ; 李国勤 ; 刘长胜 ; 刘斌 ; 智强
  • 英文作者:SUN Dan;DING Haiyang;LI Guoqin;LIU Changsheng;LIU Bin;ZHI Qiang;Key Laboratory of Advanced Measurement and Test Technique for Aviation Propulsion System,Liaoning Province,School of Aero-engine,Shenyang Aerospace University;Beijing Aerospace Engine Control System Technology Company,Limited,Aero Engine Corporation of China;Collaborative Innovation Center of Major Machine Manufacturing in Liaoning,Shenyang Blower Works Group Company Limited;
  • 关键词:刷式密封 ; 流固耦合 ; 泄漏特性实验 ; 流场特性 ; 公式构造
  • 英文关键词:brush seal;;fluid-structure interaction;;leakage characteristic experiment;;flow field characteristics;;formula constructed
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:沈阳航空航天大学航空发动机学院辽宁省航空推进系统先进测试技术重点实验室;中国航空发动机集团有限公司北京航科发动机控制系统科技有限公司;沈阳鼓风机集团股份有限公司辽宁重大装备制造协同创新中心;
  • 出版日期:2019-07-12 14:04
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(51675351);; 中国博士后科学基金(2018M633572);; 辽宁省高等学校创新人才支持计划项目(LR2016033)
  • 语种:中文;
  • 页:HKDI201907013
  • 页数:11
  • CN:07
  • ISSN:11-2297/V
  • 分类号:118-128
摘要
从理论与实验两方面研究了刷式密封泄漏流动特性及影响因素。建立了考虑刷丝变形的刷式密封泄漏流动特性流固耦合理论模型,实验研究了刷式密封泄漏量随进出口压比和转速等的变化规律,并与理论求解模型对比验证。在此基础上,运用理论模型分析了不同结构参数对密封泄漏量的影响规律,验证了构造的刷式密封泄漏量理论计算公式的准确性。研究结果表明:径向间隙一定时,刷式密封泄漏量随压比的增大而近似线性增加,转速对刷式密封的泄漏量影响不大;刷丝直径和刷丝间隙通过影响气体在刷丝束区域有效流通面积来影响泄漏量,有效流通面积越小,泄漏量越小;反之,则越大;随着刷丝直径、刷丝轴向排数的增大,刷式密封泄漏量逐渐降低;随着刷丝间隙的增大,泄漏量逐渐增大;随着后挡板保护高度、刷丝与后挡板轴向间隙的增大,泄漏量先显著增大后缓慢增加,最后趋于稳定;所构造的泄漏量理论公式可以准确预测刷式密封的泄漏量,为刷式密封结构优化设计提供理论依据。
        The leakage flow characteristics and the influencing factors of the brush seals were studied both theoretically and experimentally.A fluid-structure interaction theoretical model was established to analyze the leakage flow characteristics of brush seals.Experiments were presented to test the leakage quantity of brush seals with different pressure ratios and rotational speeds and compared with the theory solution model to verify.Based on the accuracy of the theory computational model,the effect law of the brush seal leakage quantity in different structural parameters was analyzed,and the formula for predicting the leakage quantity of brush seals was constructed.The results showed that,the leakage quantity of the brush seals increased approximately linearly with the increase of the pressure ratio when the radial clearance was fixed.The rotational speed had little influence on the leakage quantity of the brush seals.Bristles diameter and the clearance of the bristles affected the leakage quantity through affecting the effective flow area of the gas in the brush area,the smaller effective flow area led to the smaller leakage quantity.With the increase of the bristles diameter and the axial rows of the bristles,the leakage quantity of the brush seals decreased gradually.The leakage quantity increased with the increase of the bristles clearances.As the backing plate fence height and the axial clearance between the last row bristles and the backing plate fence increased,the leakage quantity firstly increased rapidly,and finally became stable.The constructed theoretical formula of leakage quantity can accurately predict the leakage quantity of brush seals and provide a theoretical basis for the optimization design of brush seals structure.
引文
[1]CONNER K J,CHILDS D W.Rotordynamic coefficient test results for a four-stage brush seal[J].Journal of Propulsion and Power,2015,9(3):462-465.
    [2]DOGU Y,AKSIT M F,DEMIROGLU M,et al.Evaluation of flow behavior for clearance brush seals[J].Journal of Engineering for Gas Turbines and Power,2008,130(1):012507.1-012507.9.
    [3]胡广阳.航空发动机密封技术应用研究[J].航空发动机,2012,38(3):1-4.HU Guangyang.Application research of seal technologies for aeroengine[J].Aeroengine,2012,38(3):1-4.(in Chinese)
    [4]DOGU Y,BAHAR A S,SERTCAKAN M C,et al.Computational fluid dynamics investigation of brush seal leakage performance depending on geometric dimensions and operating conditions[J].Journal of Engineering for Gas Turbines and Power,2016,138(3):032506.1-032506.13.
    [5]CHEW J W,LAPWORTH B L,MILLENER P J.Mathematical modeling of brush seals[J].International Journal of Heat and Fluid Flow,1995,16(6):493-500.
    [6]黄学民,史伟,王洪铭.刷式密封中泄漏流动的多孔介质数值模型[J].航空动力学报,2000,15(1):55-58.HUANG Xuemin,SHI Wei,WANG Hongming.Porous medium leakage flow model of brush seal[J].Journal of Aerospace Power,2000,15(1):55-58.(in Chinese)
    [7]张元桥,闫嘉超,李军.刷式密封泄漏和传热特性影响因素的数值研究[J].推进技术,2018,39(1):116-124.ZHANG Yuanqiao,YAN Jiachao,LI Jun.Numerical investigations on influence factors of leakage flow and heat transfer characteristics of brush seal[J].Journal of Propulsion Technology,2018,39(1):116-124.(in Chinese)
    [8]孙丹,刘宁宁,胡广阳,等.考虑刷丝变形的刷式密封流场特性与力学特性流固耦合研究[J].航空动力学报,2016,31(10):2544-2553.SUN Dan,LIU Ningning,HU Guangyang,et al.Fluidstructure interaction investigation on the flow field and mechanical characteristic in brush seals with bristle deflections[J].Journal of Aerospace Power,2016,31(10):2544-2553.(in Chinese)
    [9]CONNER K J,CHILDS D W.Rotordynamic and leakage characteristics of a 4-stage brush seal[D].College Station,Texas,US:The Agricultural and Mechanical College of Texas,1990.
    [10]曹广州,吉洪湖,袁艳平.模拟刷式封严泄漏流动的多孔介质模型[J].航空动力学报,2008,23(3):443-447.CAO Guangzhou,JI Honghu,YUAN Yanping.A porous medium model for simulating leakage flows through brush seals[J].Journal of Aerospace Power,2008,23(3):443-447.(in Chinese)
    [11]邱波,李军,冯增国,等.两级刷式密封泄漏特性的实验与数值研究[J].西安交通大学学报,2013,47(7):7-12.QIU Bo,LI Jun,FENG Zengguo,et al.Experimental and numerical investigations of the leakage characteristics of two-stage brush seal[J].Journal of Xi'an Jiaotong University,2013,47(7):7-12.(in Chinese)
    [12]吕坤,张荻,谢永慧.不同来流下薄平板流固耦合特性分析[J].中国电机工程学报,2011,31(26):76-82.LKun,ZHANG Di,XIE Yonghui.Fluid-structure interaction for thin plate with different flow parameters[J].Proceedings of CSEE,2011,31(26):76-82.(in Chinese)
    [13]权凌霄,孔祥东,俞滨,等.液压管路流固耦合振动机理及控制研究现状与发展[J].机械工程学报,2015,51(18):175-183.QUAN Lingxiao,KONG Xiangdong,YU Bin,et al.Research status and trends on fluid-structure interaction vibration mechanism and control of hydraulic pipeline[J].Journal of Mechanical Engineering,2015,51(18):175-183.(in Chinese)
    [14]张艾萍,张帅,李相通,等.低滞后刷式密封泄漏流动数值模拟及结构优化[J].润滑与密封,2015,40(2):67-72.ZHANG Aiping,ZHANG Shuai,LI Xiangtong,et al.Numerical simulation on leakage flow characteristics and optimization on structure of low hysteresis brush seal[J].Lubrication Engineering,2015,40(2):67-72.(in Chinese)
    [15]李军,晏鑫,丰镇平.刷式密封泄漏流动特性影响因素的研究[J].热能动力工程,2007,22(3):250-254.LI Jun,YAN Xin,FENG Zhenping.A study of the influence of brush-type seals on leaking steam flow characteristics[J].Journal of Engineering for Thermal Energy and Power,2007,22(3):250-254.(in Chinese)
    [16]孔繁余,陈浩,王婷,等.基于流固耦合的减压塔底泵泵体强度分析[J].机械工程学报,2013,49(2):159-164.KONG Fanyu,CHEN Hao,WANG Ting,et al.Strength analysis of decompression tower bottom pump's pump casing based on fluid-solid coupling[J].Journal of Mechanical Engineering,2013,49(2):159-164.(in Chinese)
    [17]YAKHOT V,ORSZAG S A.Renormalization group analysis of turbulence:Ⅰbasic theory[J].Journal of Scientific Computing,1986,1(1):3-51.
    [18]LAUDER B E,SPALDING D B.Lectures in mathematical models of turbulence[R].London:Academic Press,1972.
    [19]张小伟,王延荣,张潇,等.涡轮机械叶片的流固耦合数值计算方法[J].航空动力学报,2009,24(7):1622-1626.ZHANG Xiaowei,WANG Yanrong,ZHANG Xiao,et al.Numerical method for fluid-structure interaction in turbomachinery bladings[J].Journal of Aerospace Power,2009,24(7):1622-1626.(in Chinese)
    [20]李方硕,陈前,周俊辉.双腔液固混合介质隔振器刚度阻尼特性分析[J].振动与冲击,2016,35(10):91-95.LI Fangshuo,CHEN Qian,ZHOU Junhui.Stiffness and damping properties of dual-chamber liquid and solid mixture vibration isolator[J].Journal of Vibration and Shock,2016,35(10):91-95.(in Chinese)
    [21]钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构,2008,14(1):6-18.QIAN Ruojun,DONG Shilin,YUAN Xingfei.Advances in research on fluid-structure interaction theory[J].Spatial Structures,2008,14(1):6-18.(in Chinese)
    [22]陶海亮,朱阳历,郭宝亭,等.压气机叶片流固耦合数值计算[J].航空动力学报,2012,27(5):1054-1060.TAO Hailiang,ZHU Yangli,GUO Baoting,et al.Numerical simultion of aeroelastic response in compressor based on fluid-structure coupling[J].Journal of Aerospace Power,2012,27(5):1054-1060.(in Chinese)
    [23]EGLI A.A general method for correlating labyrinth-seal leak-rate data[J].Journal of Fluids Engineering,1960,82(2):265-270.
    [24]刘宁宁.基于流固耦合的刷式密封流场特性与力学特性研究[D].沈阳:沈阳航空航天大学,2017.LIU Ningning.Study of flow and mechanical characteristics of brush seal based on fluid-ructure interraction[D].Shenyang:Shenyang Aerospace University,2017.(in Chinese)
    [25]GAMAL A J M,VANCE J M.Labyrinth seal leakage tests:tooth profile,tooth thickness,and eccentricity effects[J].Journal of Engineering for Gas Turbines and Power,2008,130(1):012510.1-012510.11.
    [26]李志刚,李军,丰镇平.蜂窝密封流动特性的数值研究和泄漏量计算公式的构造[J].机械工程学报,2011,47(2):142-148.LI Zhigang,LI Jun,FENG Zhenping.Numerical investigation on discharge behavior and predication formula establishment of leakage flow rate of honeycomb seal[J].Journal of Mechanical Engineering,2011,47(2):142-148.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700