海南热带山地雨林不同生态种组光合能力与水分利用效率
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photosynthetic Capacity and Water Use Efficiency of Different Ecological Species Groups in Tropical Montane Rain Forest,Hainan Island
  • 作者:张明 ; 刘福德 ; 安树青 ; 欧阳琰
  • 英文作者:ZHANG Ming;LIU Fude;AN Shuqing;OUYANG Yan;Nanjing Institute of Environmental Sciences,Ministry of Environmental Protection;School of Life Science,Nanjing University;Environmental Science and Safety Engineering,Tianjin University of Technology;
  • 关键词:热带山地雨林 ; 种间联结 ; 生态种组 ; 光合能力 ; 水分利用效率
  • 英文关键词:tropical montane rain forest;;interspecific association;;ecological species groups;;photosynthetic capacity;;water use efficiency
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:环境保护部南京环境科学研究所;南京大学生命科学学院;天津理工大学环境科学与安全工程学院;
  • 出版日期:2017-04-18
  • 出版单位:生态环境学报
  • 年:2017
  • 期:v.26
  • 基金:中央级公益性科研院所基本科研业务费专项“气候变化背景下西藏高原植被格局变化及气候风险研究”
  • 语种:中文;
  • 页:TRYJ201704005
  • 页数:6
  • CN:04
  • ISSN:44-1661/X
  • 分类号:34-39
摘要
种间关联性对于研究群落结构、演化及分类具有重要意义,并在很大程度上表现了群落演替的趋势和进程。为了研究生态种组的光合生理特征及其在演替过程中的变化,在海南岛热带山地雨林3个演替阶段(前期、中期和后期)的样地内测定群落的种间联结性,并利用种间联结性划分出生态种组;应用Li-6400光合测定系统测量各生态种组在不同演替过程的最大光合速率(maximal photosynthesis rate,Pmax)和水分利用效率(WUE)。结果表明:演替前期和演替中期样地的物种总联结性指数VR分别为1.038和1.232,树种间总体呈正联结,但不显著;演替后期样地的物种总体联结性指数VR为2.238,群落总体联结性呈显著正相关。群落总体正关联性随着演替的进行而加强。每个演替阶段的种群可分为3个生态种组;第1生态种组内的物种两两之间均呈显著正联结;第2生态种组中虽然个别种之间联结性不显著,但大多数物种两两之间也形成显著正联结,某些种与第1生态种组中的种形成显著负联结;第3生态种组内种对间两两彼此独立。各生态种组的光合能力随演替的进行而逐渐降低;第1生态种组演替前期的最大光合速率显著高于中后期(P<0.05);第2生态种组前期的最大光合速率显著高于后期(P<0.05)。不同演替阶段,不同生态种组水分利用效率差异不显著(P>0.05)。光合能力是决定生态种组的内在因素。
        Interspecific association is of great importance to research of community structure,evolution and classification.And interspecific association shows in a large part trends and processes of community succession.To study photosynthetic characteristics of the ecological species groups and changes in succession,interspecific associations were measured in plots of 3 successional stages(early stage,middle stage and late stage) of Hainan Island tropical rain forest,and were used to divide ecological species groups,whose maximal photosynthesis rate(Pmax) and water use efficiency(WUE) were measured using a Li-6400 portable photosynthesis system.The results showed that overall association indexes(VR) of early successional stage and middle successional stage were 1.038 and 1.232,and the positive associations were present among overall woody species of the communities during two successional stages(P>0.05).Overall association index(VR) of late successional stage was 2.238,and the positive association was present among overall woody species of the communities during the late successional stage(P<0.05).The positive association among overall woody species of the communities became stronger with the succession process.Communities of 3 successional stages were divided to 3 ecological species groups.And species of the first ecological species group were significantly and positively associated with each other;most species of the second ecological species group were also significantly and positively associated with each other,but some of them were not,and several of them were significantly and negatively associated with species from the first ecological species group;species of the third ecological species group were independent.Values of maximal photosynthesis rate(Pmax) of all 3 ecological species group gradually decreased in the progress of succession.Pmax of the first ecological species group in early successional stage was significantly high than that in middle and latter successional stages(P<0.05);Pmax of the second ecological species group in early successional stage was significantly high than that in latter successional stage(P<0.05);the other Pmax,as well as WUE,were not significantly different with each other(P>0.05).Photosynthetic capacity was the intrinsic factor of difference ecological species groups.
引文
BASSOW S L,BAZZAZ F A.1997.Intra-and inter-specific variation in canopy photosynthesis in a mixed deciduous forest[J].Oecklogia,109:507-515.
    BAZZAZ FA.1996.Plants in changing environments:linking physiological,population,and community ecology[M].New York:Cambridge University Press.
    BRAATNE J H,BLISS L C.1999.Comparative physiological ecology of lupines colonizing early successional habitats on Mount St.Helens[J].Ecology,80(3):891-907.
    FISCHER R A,TURNER N C.1978.Plant productivity in the arid and semiarid zones[J].Annual Review of Plant Physiology,29:277-317.
    GREIG-SMITH P.1983.Quantitative Plant Ecology[M].Oxford:Blackwell Science Publication:154-162.
    KRAMER P J,KOZLOWSKI T T.1979.Physiology of Woody Plants[M].London:Academic Press.
    LAMBERS H,CHAPIN III F S,PONS T L.1998.Plant physiological ecology[M].New York:Springer-Verlag.
    LUBCHENCO J,OLSON A M,BRUBAKER L B et al.1991.The sustainable biosphere initiative:an ecological research agenda[J].Ecology,72(2):371-412.
    鲍显诚,张绅,杨邦顺,等.1986.植被生态学的目的和方法[M]//MUELLER-DOMBOIS D,ELLENBERG H.北京:科学出版社.
    NOGUEIRA A,MARTINEZ C A,FERREIRA L L,et al.2004.Photosynthesis and water use efficiency in twenty tropical tree species of differing succession status in a Brazilian reforestation[J].Photosynthetica,42(3):351-356.
    PICKETT S T A,MCDONNELL M J.1989.Changing perspectives in community dynamics:A theory of successional forces[J].Trends in Ecology and Evolution,4(8):241-245.
    QUILICI A,MEDINA A.1998.Photosynthesis-nitrogen relationships in pioneer plants of disturbed tropical montane forest sites[J].Photosynthetica,35(4):525-534.
    REICH P B,ELLSWORTH D S,WALTERS M B.1998.Leaf structure(specific leaf area)modulates photosynthesis-nitrogen relation:evidence from within and across species and functional groups[J].Functional Ecology,12(6):948-958.
    SCHLUTER D.1984.A variance test for detecting species association with some example application[J].Ecology,65(3):998-1005.
    THOMAS S C,BAZZAZ F A.1999.Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees[J].Ecology,80(5):1607-1622.
    THOMPSON J N.1982.Interactioin and Coevolution[M].Wiley:New York.
    VITOUSEK P M.1994.Beyond global warming:ecology and global change[J].Ecology,75:1861-1876.
    WHITTAKER R H.1967.Gradient analysis of vegetation[J].Biological Reviews,42(2):207-264.
    陈焕镛.1964.海南植物志[M].第一册.北京:科学出版社.
    陈焕镛.1965.海南植物志[M].第二册.北京:科学出版社.
    广东省植物所.1974.海南植物志[M].第三卷.北京:科学出版社.
    蒋有绪.1982.川西亚高山森林植被的区系、种间关联和群落排序的生态分析[J].植物生态学与地植物学丛刊,6(4):281-300.
    李庆康,马克平.2002.植物群落演替过程中植物生理生态学特性及其主要环境因子的变化[J].植物生态学报,26(S1):9-19.
    李意德,许涵,陈德祥,等.2007.从植物种群间联结性探讨生态种组与功能群划分--以尖峰岭热带低地雨林乔木层数据为例[J].林业科学,43(4):9-16.
    彭少麟.1996.南亚热带森林群落动态学[M].北京:科学出版社.
    王伯荪,彭少麟.1985.南亚热带常绿阔叶林种间联结的测定技术研究[J].植物生态学与地植物学学报,9(4):274-285.
    王文进,张明,刘福德,等.2007.海南岛吊罗山热带山地雨林两个演替阶段的种间联结性.生物多样性,15(3):257-263.
    王铮锋,安树青,DAVID G,等.1999.海南岛吊罗山山地雨林物种多样性[J].生态学报,(1):63-69.
    杨一川,庄平,黎系荣.1994.四川峨眉山峨眉栲、华木荷群落研究[J].植物生态学报,18(2):105-120.
    臧润国,安树青,陶建平,等.2004.海南岛热带林生物多样性维持机制[M].北京:科学出版社.
    张明,刘福德,王中生,等.2008.热带山地雨林演替早期先锋树种与非先锋树种叶片特征的差异[J].南京林业大学学报(自然科学版),32(4):28-32.
    张明,王文进,刘福德,等.2007.海南热带山地雨林幼苗幼树的光合能力与水分利用效率[J].应用生态学报,18(10):2160-2166.
    张思玉,郑世群.2002.福建永定桫椤群落内主要灌木种群的种间联结性研究[J].云南植物研究,24(1):17-22.
    郑慧莹,李建东,祝廷成.1986.松嫩平原南部植物群落的分类和排序[J].植物生态学与地植物学学报,10(3):171-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700