尖峰岭热带山地雨林林冠层乔木某些功能性状的系统发育信号、关联性及其演化模式
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phylogenetic signals,correlations,and evolutionary patterns of some functional traits for forest canopy trees in Jianfengling tropical montane rainforest
  • 作者:许格希 ; 史作民 ; 刘顺 ; 陈欢欢 ; 唐敬超 ; 马凡强 ; 许涵 ; 刘世荣 ; 李意德 ; 林明献
  • 英文作者:XU Gexi;SHI Zuomin;LIU Shun;CHEN Huanhuan;TANG Jingchao;MA Fanqiang;XU Han;LIU Shirong;LI Yide;LIN Mingxian;Key Laboratory on Forest Ecology and Environmental Sciences,State Forestry Administration,Research Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry;Co-Innovation Centre for Sustainable Forestry in Southern China,Nanjing Forestry University;Research Institute of Tropical Forestry,Chinese Academy of Forestry;Experimental Station of Research Institute of Tropical Forestry,Chinese Academy of Forestry;
  • 关键词:功能性状 ; 系统发育信号 ; 性状分化 ; 林冠 ; 热带山地雨林 ; 尖峰岭
  • 英文关键词:functional traits;;phylogenetic signal;;trait divergence;;forest canopy;;tropical montane rainforest;;Jianfengling
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国林业科学研究院森林生态环境与保护研究所国家林业局森林生态环境重点实验室;南京林业大学南方森林可持续经营创新中心;中国林业科学研究院热带林业研究所;中国林业科学研究院热带林业研究所试验站;
  • 出版日期:2017-04-24 08:54
  • 出版单位:生态学报
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金资助项目(31290223,31570240)
  • 语种:中文;
  • 页:STXB201717013
  • 页数:13
  • CN:17
  • ISSN:11-2031/Q
  • 分类号:116-128
摘要
热带雨林林冠层具有丰富的物种、功能和系统发育(谱系)多样性,能够显著影响生态系统生物地球化学循环,调节大气水热平衡,缓解气候变化与人为干扰的负面作用。因此热带雨林林冠层功能和谱系生态学研究是目前群落生态学研究的热点之一。选取海南尖峰岭热带山地雨林3个1 hm2样地的林冠层为研究对象,利用样地林冠树种清查数据基于APG III系统发育结构重建样地林冠层系统发育树。利用Blomber's K对和Pagel'sλ指标结合系统发育独立性比较法对组成林冠层乔木树种的结构、化学计量和水力学功能性状(11个性状)的系统发育信号、关联性和演化模式进行研究,以探讨物种亲缘关系对尖峰岭热带山地雨林林冠层多维功能性状关联性及其动态演化的影响。结果表明,有8个功能性状(叶面积、叶厚度和潜在最大高度除外)具有显著的系统发育信号(通过P<0.05的显著性检验),Blomber's K值和Pagel'sλ值分别介于0.202—0.392和0.277—0.847之间,表明尖峰岭热带山地雨林林冠层功能性状普遍存在系统发育保守性。在系统发育背景下,林冠层乔木树种结构、化学和水力学功能性状在物种水平普遍存在显著关联性(P<0.05),表现出趋同或趋异进化;而且林冠层乔木随物种分化其功能性状分化模式大致呈水平"漏斗"状,姐妹类群功能性状间差异性在物种分化早期(大约1亿2千万年前至6000万年前)明显小于其在中后期(大约6000万年前至今)的差异性,导致了林冠层性状空间在中后期迅速膨大。然而林冠层主要功能性状在系统发育树内部每一节点上姊妹类群分化产生的系统发育独立性比较值绝大部分与零模型随机模拟值并无显著性差异。了解系统发育背景下林冠层功能性状的权衡关系及其随物种演化的分化模式与时间动态为进一步探究热带雨林林冠生态系统功能发挥奠定基础。
        The tropical rainforest canopy has enormous diversity of species,function,and phylogeny. It can significantly affect biogeochemical cycles of ecosystem,which can regulate the atmospheric water-heat balance,as well as relieve the negative effect brought by climate change and human disturbance. Thus,functional and phylogenetic ecology of tropical rainforest canopy are among the most burning topics of research in community ecology. The present study was conducted in the forest canopy of three 1 hm~2 plots located in Jianfengling tropical montane rainforest on Hainan Island. We used inventory data set of canopy trees to construct a phylogenetic tree of forest canopy in these plots based on APG III phylogenetic structure. Indices of Blomber's K and Pagel's λ,combined with phylogenetic independent contrasts method,were used to study the phylogenetic signals,correlations,and evolved patterns of eleven structural,stoichiometric,and hydraulic traits( i.e. leaf area,leaf thickness,leaf dry matter content,specific leaf area,leaf total organism content,leaf nitrogen content,leaf phosphorus content,leaf potassium content,vein density,leaf water content,potential maximum height) of the canopy trees. Our goal was to explore the effect of phylogenetic relatedness between species on the correlations of multi-dimensional functional traits and their dynamic evolutionary patterns at the canopy layer in Jianfengling tropical montane rainforest. The results showed that eight out of the eleven functional traits evolved with significant phylogenetic signals( P<0.05),except for leaf area,leaf thickness,and potential maximum height; and their Blomber's K and Pagel's λ values ranged from 0.202 to 0.392 and from 0. 277 to 0. 847,respectively. This indicated that phylogenetic conservatism commonly existed in these canopy functional traits in Jianfengling tropical montane rainforest. Furthermore,structural,stoichiometric,and hydraulic traits of canopy trees were universally associated with each other at the species level( P < 0.05) after considering species' phylogenetic relatedness, which demonstrated convergent or divergent evolution. The differentiated patterns of these functional traits displayed generally like a funnel-shape along with divergence of species. In addition,the variation of functional traits for sister nodes,occurring in the preliminary evolved phase( c. 120 to 60 million years ago),was weaker than that in the middle and latest phases( since about 60 million years ago),which indicated the rapid expansion of traitspace for the forest canopy in the latter ones. However,a majority of phylogenetic independent contrast values obtained from the divergence of sister taxa on each of the phylogenetic internal node,given of evolution of each trait,were nonsignificantly different against the randomly simulated values generated by a null model. In summary,understanding the trade-off relationship of functional traits and their divergent patterns and temporal dynamics with evolution is a foundation for further exploration of the ecosystem functioning for tropical rainforest canopy.
引文
[1]Mc Gill B J,Enquist B J,Weiher E,Westoby M.Rebuilding community ecology from functional traits.Trends in Ecology&Evolution,2006,21(4):178-185.
    [2]Lasky J R,Uriarte M,Boukili V K,Erickson D L,Kress W J,Chazdon R L.The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession.Ecology Letters,2014,17(9):1158-1167.
    [3]Letcher S G,Lasky J R,Chazdon R L,Norden N,Wright S J,Meave J A,Pérez-García E A,Mu1oz R,Romero-Pérez E,Andrade A,Andrade J L,Balvanera P,Becknell J M,Bentos T V,Bhaskar R,Bongers F,Boukili V,Brancalion P H S,César R G,Clark D A,Clark D B,Craven D,De Francesco A,Dupuy J M,Finegan B,González-Jiménez E,Hall J S,Harms K E,Hernández-Stefanoni J L,Hietz P,Kennard D,Killeen T J,Laurance S G,Lebrija-Trejos E E,Lohbeck M,Martínez-Ramos M,Massoca P E S,Mesquita R C G,Mora F,Muscarella R,Paz H,PinedaGarcía F,Powers J S,Quesada-Monge R,Rodrigues R R,Sandor M E,Sanaphre-Villanueva L,Schüller E,Swenson N G,Tauro A,Uriarte M,van Breugel M,Vargas-Ramírez O,Viani R A G,Wendt A L,Williamson G B.Environmental gradients and the evolution of successional habitat specialization:a test case with 14 Neotropical forest sites.Journal of Ecology,2015,103(5):1276-1290.
    [4]Soliveres S,Smit C,Maestre F T.Moving forward on facilitation research:response to changing environments and effects on the diversity,functioning and evolution of plant communities.Biological Reviews,2015,90(1):297-313.
    [5]Díaz S,Kattge J,Cornelissen J H C,Wright I J,Lavorel S,Dray S,Reu B,Kleyer M,Wirth C,Prentice I C,Garnier E,B9nisch G,Westoby M,Poorter H,Reich P B,Moles A T,Dickie J,Gillison A N,Zanne A E,Chave J,Joseph Wright S,Sheremet'ev S N,Jactel H,Baraloto C,Cerabolini B,Pierce S,Shipley B,Kirkup D,Casanoves F,Joswig J S,Günther A,Falczuk V,Rüger N,Mahecha M D,GornéL D.The global spectrum of plant form and function.Nature,2016,529(7585):167-171.
    [6]Wright I J,Reich P B,Cornelissen J H C,Falster D S,Groom P K,Hikosaka K,Lee W,Lusk C H,Niinemets,Oleksyn J,Osada N,Poorter H,Warton D I,Westoby M.Modulation of leaf economic traits and trait relationships by climate.Global Ecology and Biogeography,2005,14(5):411-421.
    [7]Anderson-Teixeira K J,Davies S J,Bennett A C,Gonzalez-Akre E B,Muller-Landau H C,Wright S J,Abu Salim K,Almeyda Zambrano A M,Alonso A,Baltzer J L,Basset Y,Bourg N A,Broadbent E N,Brockelman W Y,Bunyavejchewin S,Burslem D F R P,Butt N,Cao M,Cardenas D,Chuyong G B,Clay K,Cordell S,Dattaraja H S,Deng X,Detto M,Du X,Duque A,Erikson D L,Ewango C E N,Fischer G A,Fletcher C,Foster R B,Giardina C P,Gilbert G S,Gunatilleke N,Gunatilleke S,Hao Z,Hargrove W W,Hart T B,Hau B C H,He F,Hoffman F M,Howe R W,Hubbell S P,Inman-Narahari F M,Jansen P A,Jiang M,Johnson D J,Kanzaki M,Kassim A R,Kenfack D,Kibet S,Kinnaird M F,Korte L,Kral K,Kumar J,Larson A J,Li Y,Li X,Liu S,Lum S K Y,Lutz J A,Ma K,Maddalena D M,Makana J R,Malhi Y,Marthews T,Mat Serudin R,Mc Mahon S M,Mc Shea W J,Memiaghe H R,Mi X,Mizuno T,Morecroft M,Myers J A,Novotny V,De Oliveira A A,Ong P S,Orwig D A,Ostertag R,Den Ouden J,Parker G G,Phillips R P,Sack L,Sainge M N,Sang W,Sri-Ngernyuang K,Sukumar R,Sun I F,Sungpalee W,Suresh H S,Tan S,Thomas S C,Thomas D W,Thompson J,Turner B L,Uriarte M,Valencia R,Vallejo M I,Vicentini A,Vr2ka T,Wang X,Wang X,Weiblen G,Wolf A,Xu H,Yap S,Zimmerman J.CTFS-Forest GEO:a worldwide network monitoring forests in an era of global change.Global Change Biology,2015,21(2):528-549.
    [8]Wright I J,Westoby M.Differences in seedling growth behaviour among species:trait correlations across species,and trait shifts along nutrient compared to rainfall gradients.Journal of Ecology,1999,87(1):85-97.
    [9]Wright I J,Reich P B,Westoby M.Strategy shifts in leaf physiology,structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats.Functional Ecology,2001,15(4):423-434.
    [10]Wright I J,Reich P B,Westoby M,Ackerly D D,Baruch Z,Bongers F,Cavender-Bares J,Chapin T,Cornelissen J H C,Diemer M,Flexas J,Garnier E,Groom P K,Gulias J,Hikosaka K,Lamont B B,Lee T,Lee W,Lusk C,Midgley J J,Navas M L,Niinemets U,Oleksyn J,Osada N,Poorter H,Poot P,Prior L,Pyankov V I,Roumet C,Thomas S C,Tjoelker M G,Veneklaas E J,Villar R.The worldwide leaf economics spectrum.Nature,2004,428(6985):821-827.
    [11]Zhu Y,Comita L S,Hubbell S P,Ma K P.Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest.Journal of Ecology,2015,103(4):957-966.
    [12]Zanne A E,Tank D C,Cornwell W K,Eastman J M,Smith S A,Fitz John R G,Mc Glinn D J,O'Meara B C,Moles A T,Reich P B,Royer D L,Soltis D E,Stevens P F,Westoby M,Wright I J,Aarssen L,Bertin R I,Calaminus A,Govaerts R,Hemmings F,Leishman M R,Oleksyn J,Soltis P S,Swenson N G,Warman L,Beaulieu J M.Three keys to the radiation of angiosperms into freezing environments.Nature,2014,506(7486):89-92.
    [13]Smith S A,Beaulieu J M,Stamatakis A,Donoghue M J.Understanding angiosperm diversification using small and large phylogenetic trees.American Journal of Botany,2011,98(3):404-414.
    [14]Ackerly D D,Schwilk D W,Webb C O.Niche evolution and adaptive radiation:testing the order of trait divergence.Ecology,2006,87(S7):S50-S61.
    [15]Yang J,Ci X Q,Lu M M,Zhang G C,Cao M,Li J,Lin L X.Functional traits of tree species with phylogenetic signal co-vary with environmental niches in two large forest dynamics plots.Journal of Plant Ecology,2014,7(2):115-125.
    [16]Pavoine S,Vela E,Gachet S,De Bélair G,Bonsall M B.Linking patterns in phylogeny,traits,abiotic variables and space:a novel approach to linking environmental filtering and plant community assembly.Journal of Ecology,2011,99(1):165-175.
    [17]Losos J B.Phylogenetic niche conservatism,phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species.Ecology Letters,2008,11(10):995-1003.
    [18]Mouquet N,Devictor V,Meynard C N,Munoz F,Bersier L F,Chave J,Couteron P,Dalecky A,Fontaine C,Gravel D,Hardy O J,Jabot F,Lavergne S,Leibold M,Mouillot D,Münkemüller T,Pavoine S,Prinzing A,Rodrigues A S L,Rohr R P,Thébault E,Thuiller W.Ecophylogenetics:advances and perspectives.Biological Reviews,2012,87(4):769-785.
    [19]Garland T Jr,Harvey P H,Ives A R.Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts.Systematic biology,1992,41(1):18-32.
    [20]蔡志全,齐欣,曹坤芳.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应.应用生态学报,2015,15(2):201-204.
    [21]Evans J R,Poorter H.Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain.Plant,Cell&Environment,2001,24(8):755-767.
    [22]Poorter H,Nagel O.The role of biomass allocation in the growth response of plants to different levels of light,CO2,nutrients and water:a quantitative review.Australian Journal of Plant Physiology,2000,27(6):595-607.
    [23]Asner G P,Martin R E,Carranza-Jiménez L,Sinca F,Tupayachi R,Anderson C B,Martinez P.Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region.New Phytologist,2014,204(1):127-139.
    [24]马克平.生物多样性科学的热点问题.生物多样性,2016,24(1):1-2.
    [25]Poorter L,Bongers L,Bongers F.Architecture of 54 moist-forest tree species:traits,trade-offs,and functional groups.Ecology,2006,87(5):1289-1301.
    [26]Asner G P,Martin R E.Contrasting leaf chemical traits in tropical lianas and trees:implications for future forest composition.Ecology Letters,2012,15(9):1001-1007.
    [27]Jin D M,Cao X C,Ma K P.Leaf functional traits vary with the adult height of plant species in forest communities.Journal of Plant Ecology,2014,7(1):68-76.
    [28]李意德,许涵,骆土寿,陈德祥,林明献.中国生态系统定位观测与研究数据集·森林生态系统卷:海南尖峰岭站(生物物种数据集).北京:中国农业出版社,2012:9-50.
    [29]许涵,李意德,骆土寿,陈德祥,林明献,吴建辉,李艳朋,杨怀,周璋.海南尖峰岭热带山地雨林——群落特征、树种及其分布格局.北京:中国林业出版社,2015:17-17.
    [30]许涵,李意德,林明献,吴建辉,骆土寿,周璋,陈德祥,杨怀,李广建,刘世荣.海南尖峰岭热带山地雨林60ha动态监测样地群落结构特征.生物多样性,2015,23(2):192-201.
    [31]Swenson N G,Enquist B J,Thompson J,Zimmerman J K.The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities.Ecology,2007,88(7):1770-1780.
    [32]Pérez-Harguindeguy N,Díaz S,Garnier E,Lavorel S,Poorter H,Jaureguiberry P,Bret-Harte M S,Cornwell W K,Craine J M,Gurvich D E,Urcelay C,Veneklaas E,Reich P B,Poorter L,Wright I J,Ray P,Enrico L,Pausas J G,De Vos A C,Buchmann N,Funes G,Quétier F,Hodgson J G,Thompson K,Morgan H D,Ter Steege H,Van Der Heijden M G A,Sack L,Blonder B,Poschlod P,Vaieretti M V,Conti G,Staver A C,Aquino S,Cornelissen J H C.New handbook for standardised measurement of plant functional traits worldwide.Australian Journal of Botany,2013,61(3):167-234.
    [33]Price C A,Symonova O,Mileyko Y,Hilley T,Weitz J S.Leaf extraction and analysis framework graphical user interface:segmenting and analyzing the structure of leaf veins and areoles.Plant Physiology,2011,155(1):236-245.
    [34]Paradis E,Claude J,Strimmer K.APE:Analyses of phylogenetics and evolution in R language.Bioinformatics,2004,20(2):289-290.
    [35]Eastman J M,Harmon L J,Tank D C.Congruification:support for time scaling large phylogenetic trees.Methods in Ecology and Evolution,2013,4(7):688-691.
    [36]Webb C O,Ackerly D D,Kembel S W.Phylocom:software for the analysis of phylogenetic community structure and trait evolution.Bioinformatics,2008,24(18):2098-2100.
    [37]Blomberg S P,Garland T Jr,Ives A R.Testing for phylogenetic signal in comparative data:Behavioral traits are more labile.Evolution,2003,57(4):717-745.
    [38]Pagel M.The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies.Systematic Biology,1999,48(3):612-622.
    [39]Freckleton R P,Harvey P H,Pagel M.Phylogenetic analysis and comparative data:a test and review of evidence.The American Naturalist,2002,160(6):712-726.
    [40]Felsenstein J.Phylogenies and the comparative method.The American Naturalist,1985,125(1):1-15.
    [41]Comas L H,Callahan H S,Midford P E.Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas:implications for the evolution of belowground strategies.Ecology and Evolution,2014,4(15):2979-2990.
    [42]Swenson N G.Functional and Phylogenetic Ecology in R.New York:Springer,2014:147-171.
    [43]Revell L J.Phytools:an R package for phylogenetic comparative biology(and other things).Methods in Ecology and Evolution,2012,3(2):217-223.
    [44]R Core Team.R:A language and environment for statistical computing.Vienna,Austria:The R Foundation for Statistical Computing,2011.http://www.R-project.org.
    [45]Sterck F J,Bongers F.Crown development in tropical rain forest trees:patterns with tree height and light availability.Journal of Ecology,2001,89(1):1-13.
    [46]Li L,Mc Cormack M L,Ma C G,Kong D L,Zhang Q,Chen X Y,Zeng H,Niinemets,Guo D L.Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests.Ecology Letters,2015,18(9):899-906.
    [47]Pavoine S,Ricotta C.Functional and phylogenetic similarity among communities.Methods in Ecology and Evolution,2014,5(7):666-675.
    [48]Pyron R A,Costa G C,Patten M A,Burbrink F T.Phylogenetic niche conservatism and the evolutionary basis of ecological speciation.Biological Reviews,2015,90(4):1248-1262.
    [49]Eichenberg D,Ristok C,Kr9ber W,Bruelheide H.Plant polyphenols-implications of different sampling,storage and sample processing in biodiversity-ecosystem functioning experiments.Chemistry and Ecology,2014,30(7):676-692.
    [50]许格希,史作民,唐敬超,刘顺,马凡强,许涵,刘世荣,李意德.海南尖峰岭热带山地雨林林冠层树种功能多样性特征.应用生态学报,2016,27(11):3444-3454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700