隐式溶剂模型计算外重组能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Implicit solvent model for calculating external recombination energy
  • 作者:徐涛
  • 英文作者:XU Tao;College of Chemistry and Chemical Engineering, Huanggang Normal University;
  • 关键词:隐式溶剂模型 ; 外重组能 ; 介电常数
  • 英文关键词:implicit solvent model;;external recombination energy;;dielectric constant
  • 中文刊名:HGXB
  • 英文刊名:Journal of Huanggang Normal University
  • 机构:黄冈师范学院化学化工学院;
  • 出版日期:2019-06-10
  • 出版单位:黄冈师范学院学报
  • 年:2019
  • 期:v.39;No.185
  • 语种:中文;
  • 页:HGXB201903016
  • 页数:4
  • CN:03
  • ISSN:42-1275/G4
  • 分类号:76-79
摘要
使用隐式溶剂模型计算萘和全氟萘的空穴/电子外重组能,探讨了在有机材料电荷转移过程中,外重组能对于电荷载流子传输速率的重要影响,考虑到隐式溶剂模型的计算结果只依赖于介电常数的选取,因此其定量结果可能存在较大误差,但却能够给出定性结论。结果表明:外重组能随介电常数的减小而降低,同时外重组能与介电常数的倒数(1/ε)成比例关系;电荷传输材料的类型与空穴/电子外重组能之间可能存在某种对应关系,即p型传输材料的空穴外重组能大于电子,而n型传输材料的空穴外重组能却小于电子。
        The hole/electron external recombination energy of naphthalene and perfluoronaphthalene was calculated using the implicit solvent model. The important effect of external recombination energy on the charge carrier transport rate in charge transfer process of organic materials was discussed. Considering that the calculation results of the implicit solvent model only depend on the dielectric constant, there may be large errors in its quantitative results, but it can give qualitative conclusions. The results show that the external recombination energy decreases with the decrease of the dielectric constant, and the external recombination energy is proportional to the reciprocal of the dielectric constant(1/ε); there may be a corresponding relationship between the type of charge transfer materials and the hole/electron external recombination energy, that is, the external recombination energy of p-type materials is larger than that of electrons, while that of n-type materials is smaller than that of electrons.
引文
[1] Materials O,Prize R,Thompson M E.Introduction:Organic Electronics and Optoelectronics[J].Chem Rev,2007,107(4):1985-1987.
    [2] Reineke S,Lindner F,Schwartz G,et al.White organic light-emitting diodes with fluorescent tube efficiency[J].Nature,2009,459(7244):234-238.
    [3] Hagfeldt A,Gratzel M.Molecular Photovoltaics[J].Acc Chem Res,2000(33):269-277.
    [4] Marcus R A.On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer I[J].J Chem Phys,1956,24(5):966-978.
    [5] Jortner,Joshua.Temperature dependent activation energy for electron transfer between biological molecules[J].J Chem Phys,1976,64(12):4860-4867.
    [6] Liu Y P,Newton M D.Solvent Reorganization and Donor/Acceptor Coupling in Electron-Transfer Processes:Self-Consistent Reaction Field Theory and ab Initio Applications[J].J Phys Chem,1995,99(33):12382-12386.
    [7] Ren H S,Ming M J,Ma J Y,et al.Theoretical Calculation of Reorganization Energy for Electron Self-Exchange Reaction by Constrained Density Functional Theory and Constrained Equilibrium Thermodynamics[J].J Phys Chem A,2013,117(33):8017-8025.
    [8] Stephens P J,Devlin F J,Chabalowski C F,et al.Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J].J Phys Chem,1994,98(45):11623-11627.
    [9] Hariharan P C,Pople J A.The influence of polarization functions on molecular orbital hydrogenation energies[J].Theoretica chimica acta,1973,28(3):213-222.
    [10] Schmidt M W,Baldridge K K,Boatz J A,et al.General atomic and molecular electronic structure system[J].J Comput Chem,1993,14(1):1347-1363.
    [11] Marcus R A.Chemical and Electrochemical Electron-Transfer Theory[J].Annu Rev Phys Chem,1964(15):155-196.
    [12] Xu T,Wang W L,Yin S W.Electrostatic Polarization Energies of Charge Carriers in Organic Molecular Crystals:A Comparative Study with Explicit State-Specific Atomic Polarizability Based AMOEBA Force Field and Implicit Solvent Method[J].J Chem Theory Comput,2018,14(7):3728-3739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700