DP780高强钢板温热成形极限图及其计算模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Forming limit diagram and its calculation model for DP780 high strength steel sheet at elevated temperatures
  • 作者:刘大海 ; 许钢碧 ; 常春
  • 英文作者:LIU Dahai;XU Gangbi;CHANG Chun;School of Aeronautical Manufacturing Engineering,Nanchang Hangkong University;
  • 关键词:高强钢板 ; 温热成形 ; 成形极限图 ; 计算模型
  • 英文关键词:high strength steel sheet;;elevated-temperature forming;;forming limit diagram(FLD);;calculation model
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:南昌航空大学航空制造工程学院;
  • 出版日期:2017-04-26 16:54
  • 出版单位:塑性工程学报
  • 年:2017
  • 期:v.24
  • 基金:江西省自然科学基金资助项目(20142BAB216023)
  • 语种:中文;
  • 页:SXGC201702032
  • 页数:6
  • CN:02
  • ISSN:11-3449/TG
  • 分类号:198-203
摘要
为评价DP780高强钢板材的温热态成形性能,基于刚模胀形试验,利用BCS-50AR热环境通用板材成形试验机和Vialux Auto Grid应变分析系统,建立了室温~500℃典型温度点下的成形极限曲线,并基于成形极限曲线理论对其成形极限规律进行了数学描述。结果表明,DP780高强钢板的成形极限曲线受温度的影响显著,随着温度的升高整体呈现上升的趋势,从而表现出较好的温热态成形性能。而受到高强钢蓝脆温度的影响,成形温度为300℃时,材料表现出低于室温的成形性能。建立的考虑温度影响的DP780成形极限曲线数学模型能较好的反映其成形极限试验规律。
        In order to evaluate the sheet metal formability of DP780 high strength steel at elevated temperatures,the forming limit curves( FLCs) in the temperature range from room temperature to 500 ℃ of the as-received metal sheets were experimentally achieved on the basis of the rigid die bulging experiments by using BCS-50 AR universal hot sheet metal forming machine and Vialux Auto Grid strain analysis system,and the calculation model of the FLCs was established based on the experimental data. Results show that the forming limit curves are significantly affected by temperature changing,and a general upward trend of FLCs is exhibited with the increasing of temperature,which indicates an enhanced formability of sheets for elevated-temperature forming. However,due to the effect of blue brittle phenomenon of high strength steel,a much lower formability is observed at 300 ℃ compared with that at room temperature. Meanwhile,the established calculation model of FLCs at different temperatures reflects the experimental results very well.
引文
[1]国家自然科学基金委员会工程与材料学部.机械工程学科发展战略报告(2011~2020)[M].1版.北京:科学出版社,2010.Engineering and Materials Science Department of the National Natural Science Foundation Committee.Development strategy report of the mechanical engineering disciplines(2011-2020)[M].The First Edition.Beijing:Science Press,2010.
    [2]KOPP R.Innovations in metal forming in the world[C]//Proceedings of the 9thInternational Conference on Technology of Plasticity.Gyeongju,Korea,2008:5-21.
    [3]杨合,李落星,王渠东,等.轻合金成形领域科学技术发展研究[J].机械工程学报,2010,46(12):31-41.YANG He,LI Luoxing,WANG Qudong,et al.Research on the development of advanced forming for lightweight alloy materials area[J].Journal of Mechanical Engineering,2010,46(12):31-41.
    [4]KARBASIAN H,TEKKAYA A E.A review on hot stamping[J].Journal of Materials Processing Technology,2010,210:2103-2118.
    [5]马宁,胡平,闫康康,等.高强度硼钢热成形技术研究及其应用[J].机械工程学报,2010,46(14):68-72.MA Ning,HU Ping,YAN Kangkang,et al.Research on boron steel for hot forming and its application[J].Journal of Mechanical Engineering,2010,46(14):68-72.
    [6]龙军峰,赵阳,吕琳,等.Docol 1200M超高强钢板温成形性能研究[J].锻压技术,2014,39(2):37-40.LONG Junfeng,ZHAO Yang,LV Lin,et al.Research on warm forming property of Docol 1200M ultra high strength steel[J].Forging&Stamping Technology,2014,39(2):37-40.
    [7]徐虹,张眸睿,谷诤巍,等.超高强度钢热成形过程中的接触热阻[J].塑性工程学报,2015,22(3):23-27.XU Hong,ZHANG Mourui,GU Zhengwei,et al.Thermal contact resistance in hot forming of ultra-high strength steel[J].Journal of Plasticity Engineering,2015,22(3):23-27.
    [8]薛雷.双相钢拼焊板温成形宏-微观统一分析理论研究[D].镇江:江苏大学,2010.XUE Lei.Marco-micro unified analysis at warm temperature for dual-phase steels tailor-welded blanks[D].Zhenjiang:Jiangsu University,2010.
    [9]NIECHAJOWICZ A,TOBOTA A.Warm deformation of Carbon steel[J].Journal of Materials Processing Technology,2000,106:123-130.
    [10]STOROJEVA L,PONGE D,KASPAR R,et al.Development of microstructure and texture of medium carbon steel during heavy warm deformation[J].Acta Materialia,2004,52:2209-2220.
    [11]LI D,GHOSH A.Tensile deformation behavior of aluminum alloys at warm forming temperatures[J].Materials Science and Engineering A,2003,352:279-286.
    [12]卢金栋.汽车用轻量化铝合金板材温成形极限研究[D].大连:大连理工大学,2014.LU Jindong.Research on warm forming limit of automotive lightweight aluminum alloy sheet[D].Dalian:Dalian University of Technology,2014.
    [13]马高山,张颂阳.变形铝镁合金温成形技术研究和发展现状[J].热加工工艺,2010,39(11):23-27.MA Gaoshan,ZHANG Songyang.Research and development status on warm forming of Al-Mg wrought alloys[J].Hot Working Technology,2010,39(11):23-27.
    [14]郭玉琴,王帅,朱新峰,等.B340/590DP钢温热成形破裂准则提出及成形极限预测[J].塑性工程学报,2015,22(3):38-43.GUO Yuqin,WANG Shuai,ZHU Xinfeng,et al.Proposal of warm forming fracture criterion and forming limit prediction of B340/590 DP steel[J].Journal of Plasticity Engineering,2015,22(3):38-43.
    [15]CUI Junjia,SUN Guangyong,XU Junrui,et al.A method to evaluate the formability of high-strength steel in hot stamping[J].Materials and Design,2015,77:95-109.
    [16]GB/T 15825.8—1995,金属薄板成形性能与试验方法成形极限图(FLD)试验[S]GB/T 15825.8—1995,Sheet metal formability and test methodsForming limit diagram(FLD)test[S]
    [17]崔忠圻.金属学与热处理[M].第2版.北京:机械工业出版社,2011.CUI Zhongqi.Physical metallurgy and heat treatment[M].The Second Edition.Beijing:China Machine Press,2011.
    [18]赫尔.断口形貌学:观察、测量和分析断口表面形貌的科学[M].李晓刚,董超芳,杜翠薇,等译.北京:科学出版社,2009.HULL D.Fractography:Observing,measuring and interpreting fracture surface topography[M].Translated by LI Xiaogang,DONG Chaofang,DU Cuiwei,et al.Beijing:Science Press,2009.
    [19]GRAF A,HOSFORD W F.Calculations of forming limit diagrams[J].Metallurgical Transactions A,1990,21:87-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700