大兴安岭北部兴安落叶松树干液流规律及影响因子分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of influencing factors on stem sap flow in Larix gmelinii in northern Da Hinggan Mountains,northeastern China
  • 作者:池波 ; 蔡体久 ; 满秀玲 ; 李奕
  • 英文作者:CHI Bo; CAI Ti-jiu; MAN Xiu-ling; LI Yi. College of Forestry, Northeast Forestry University, Harbin, 150040,P.R.China.
  • 关键词:Granier热扩散法 ; 兴安落叶松 ; 树干液流 ; 环境因子 ; 林分蒸腾量
  • 英文关键词:Granier's thermal dissipation probe method; Larix gmelinii; stem sap flow; environmental factors; stand transpiration
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:东北林业大学林学院;
  • 出版日期:2013-07-15
  • 出版单位:北京林业大学学报
  • 年:2013
  • 期:v.35
  • 基金:林业公益性行业科研专项(201104005-05);; “东北林业大学学术名师支持计划”项目
  • 语种:中文;
  • 页:BJLY201304006
  • 页数:6
  • CN:04
  • ISSN:11-1932/S
  • 分类号:25-30
摘要
利用Granier热扩散植物液流技术(TDP),于2012年5—9月连续对大兴安岭北部兴安落叶松蒸腾进行测定,结合同步观测的环境因子,分析兴安落叶松树干液流规律及其与环境因子的关系。结果表明:1)兴安落叶松蒸腾速率具有明显的昼夜变化规律,晴天和阴天均为单峰曲线,雨天为双峰曲线,且晴天和阴天的蒸腾速率高于雨天。夜间液流通量占整日液流通量的百分比为晴天(5.91%)>雨天(4.88%)>阴天(2.57%),在高温无雨情况下,液流通量呈现随高温无雨日数的增加而逐渐降低的趋势。2)6—8月兴安落叶松蒸腾量占观测期总耗水量的80%,液流密度日峰值较高,其中7月最高达23.62cm3/(cm2·h),5月次之,9月最低为2.03cm3/(cm2·h)。3)边材液流密度与环境因子存在良好的相关性,多元回归模型决定系数为0.79;影响兴安落叶松树干液流的主要影响因子为蒸汽压亏缺和光合有效辐射。4)生长季内兴安落叶松林蒸腾耗水量为566.49t/hm2,即56.65mm,占同期降雨量的12%。
        In this study, by Granier thermal dissipation probe (TDP) method, Larix gmelinii transpiration was continuously observed in northern Da Hinggan Mountains, northeastern China from May to September in 2012. Integrated with simultaneous environmental factors, transpiration of L. gmelinii and its relationship with influencing factors were investigated. The results showed that: 1) L. gmelinii transpiration rate showed significant diurnal variations, which presented unimodal curves in sunny and cloudy days, and bimodal or multimodal curves in rainy days, respectively. Transpiration rates of sunny and cloudy days were higher than those of rainy days. The ratio list of night sap flow flux accounting for a full days flow flux was: sunny day(5.91%)> rainy day (4.88%)> cloudy day(2.57%). In the case of high temperature and no rain, the sap flow presented a decreasing trend with the rainless and hot days increasing. 2) Daily peak of L. gmelinii sap flow rate was high in June to August, and it reached the highest value of 23.62 cm3/(cm2·hour) in July, the transpiration in June to August accounted for 80% of the total water consumption during observation period. The daily peak in May was less and it got the lowest value of 2.03 cm3/(cm2·hour) in September. 3) Good correlation existed between sap flow rate and environmental factors, just as the coefficient of determination of their multiple regression model was 0.79. Further correlation analyses indicated that main environmental factors influencing sap flow density in the growing season were vapor pressure deficit and photosynthetic active radiation. 4) The total transpiration of L. gmelinii stand during the growing season was 566.49 t/hm2, i.e. 56.65 mm, accounted for 12% of rainfall in the same period.
引文
[1]刘文国,刘玲,张旭东,等.杨树人工林树干液流特性及其与影响因子关系的研究[J].水土保持学报,2010,24(2):96--101.
    [2]马履一,王华田,林平.北京地区几个树种耗水性比较的研究[J].北京林业大学学报,2003,25(2):1--7.
    [3]SCHULZE E D,ROCHICHAUX R H,GRACE J,et al.Plant water balance[J].Bio Science,1987,37:30--37.
    [4]KUMAGAI T,SAITOH T M,SATO Y,et al.Transpiration,canopy conductance and the decoupling coefficient of a low land mixed dipterocarp forest in Sarawak,Borneo:Dry spell effects[J].Journal of Hydrology,2004,287:237--251.
    [5]MEINZER F C,GOLDSTEIN G,HOLBROOK N M,et al.Stomatal and environmental control of transpiration in a lowland tropical forest tree[J].Plant,Cell and Environment,1993,16:429--436.
    [6]WULLSCHLEGER S D,WILSON K B,HANSON P J.Environmental control of whole-plant transpiration,canopy conductance and estimates of the decoupling coefficient for large red maple trees[J].Agricultural and Forest Meteorology,2000,104:157--168.
    [7]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1--6.
    [8]孙慧珍,孙龙,王传宽,等.东北东部山区主要树种树干液流研究[J].林业科学,2005,41(3):36--42.
    [9]聂立水,李吉跃.应用TDP技术研究油松松干液流流速[J].北京林业大学学报,2004,26(6):49--56.
    [10]马玲,赵平,饶兴权,等.马占相思树干液流特征及其与环境因子的关系[J].生态学报,2005,25(9):2145--2151.
    [11]LU P,URBAN L,ZHAO P.Granier’s thermal dissipation probe(TDP)method for measuring sap flow in trees:Theory and practice[J].Acta Botanica Sinica,2004,46(6):631--646.
    [12]LAGERGREN F,LINDROTH A.Variation in sap flow and stem growth in relation to tree size,competition and thinning in a mixed forest of pine and spruce in Sweden[J].Forest Ecology and Management,2004,188:51--63.
    [13]王文杰,孙伟,邱岭,等.不同时间尺度下兴安落叶松树干液流密度与环境因子的关系[J].林业科学,2012,48(1):77--85.
    [14]王慧梅,孙伟,祖元刚,等.不同环境因子对兴安落叶松树干液流的时滞效应复杂性及其综合影响[J].应用生态学报,2011,22(12):3109--3116.
    [15]王翠,王传宽,孙慧珍,等.移栽自不同纬度的兴安落叶松(Larix gmelinii Rupr.)的树干液流特征[J].生态学报,2008,28(1):136--144.
    [16]孙慧珍,周晓峰,赵惠勋.白桦树树干液流的动态研究[J].生态学报,2002,22(9):1387--1391.
    [17]GRANIER A.Evaluation of transpiration in a Douglas fir stand by means of sap flow measurements[J].Tree Physiology,1987,3:309--320.
    [18]孙英君,王劲峰.一种空气饱和差区域分布的推算方法[J].国土资源遥感,2004(1):23--26.
    [19]马海波.兴安落叶松树干液流速率及其与影响因子的研究[D].呼和浩特:内蒙古农业大学,2009.
    [20]孙龙,王传宽,杨国亭,等.应用热扩散技术对红松人工林树干液流通量的研究[J].林业科学,2007,43(11):8--14.
    [21]熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J].林业科学,2003,39(2):1--7.
    [22]张雷,孙鹏森,刘世荣.树干液流对环境变化响应研究进展[J].生态学报,2009,29(10):5600--5610.
    [23]郭跃,丁国栋,吴斌,等.毛乌素沙地花棒茎干液流规律研究[J].水土保持学报,2010,24(5):110--113.
    [24]王华,赵平,蔡锡安,等.马占相思夜间树干液流的分配及其对整树蒸腾估算的影响[J].植物生态学报,2007,31(5):777--786.
    [25]马玲,饶兴权,赵平.马占相思整树蒸腾的日变化和季节变化特征[J].北京林业大学学报,2007,29(1):67--73.
    [26]SNYDER K A,RICHARDS J H,DONOVAN L A.Nighttime conductance in C3and C4species:Do plants lose water at night/[J].Journal of Experimental Botany,2003,54:861--865.
    [27]孙迪,关德新,袁凤辉,等.辽西农林复合系统中杨树水分耗散规律[J].北京林业大学学报,2010,32(4):114--120.
    [28]高峻,吴斌,孟平,等.杏树蒸腾与降水和冠层微气象因子的关系[J].北京林业大学学报,2010,32(3):14--20.
    [29]WULLSCHLEGER S D,MEINZER F C,VERTESSY R A.A review of whole-plant water use studies in trees[J].Tree Physiology,1998,18:499--512.
    [30]张彦群,王传宽.北方和温带森林生态系统的蒸腾耗水[J].应用与环境生物学报,2008,14(6):838--845.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700