正钛酸锌无机热控涂层制备及其性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Performance of Inorganic Thermal Control Coatings Based on Zinc Orthotitanate
  • 作者:张杭 ; 贺光辉 ; 张家强 ; 文陈 ; 张立功 ; 崔庆新 ; 白晶莹
  • 英文作者:ZHANG Hang;HE Guang-hui;ZHANG Jia-qiang;WEN Chen;ZHANG Li-gong;CUI Qing-xin;BAI Jing-ying;Beijing Spacecrafts;
  • 关键词:正钛酸锌 ; 共沉淀 ; 固相烧结 ; 无机热控涂层 ; 太阳吸收比 ; 红外发射率
  • 英文关键词:zinc orthotitanate;;coprecipitation;;calcination;;inorganic thermal control coatings;;solar absorptance;;infrared emittance
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:北京卫星制造厂;
  • 出版日期:2018-09-20
  • 出版单位:表面技术
  • 年:2018
  • 期:v.47
  • 语种:中文;
  • 页:BMJS201809011
  • 页数:5
  • CN:09
  • ISSN:50-1083/TG
  • 分类号:90-94
摘要
目的开展以正钛酸锌(Zn_2TiO_4)为填料的无机热控涂层研究,丰富和发展具有低太阳吸收比(α_S)、高红外发射率(ε_H)的空间稳定热控涂层体系。方法首先以草酸、四氯化钛和氯化锌等为原料,通过共沉淀、高温固相烧结和酸性提纯结合的方法制备了Zn_2TiO_4粉体,并使用XRD和SEM对粉体的晶体结构和微观形貌进行了表征。然后以Zn_2TiO_4为填料,硅酸钾(K_2SiO_3)为粘接剂,配制了热控涂料。采用划格法和热循环试验对涂料的结合力和热环境适应性分别进行了研究。结果酸性提纯处理后,实现了高纯度Zn_2TiO_4填料的制备,粒径为0.5~3μm。Zn_2TiO_4/K_2SiO_3无机热控涂层的太阳吸收比为0.13±0.02,红外发射率为0.90±0.02,划格法的结合力等级为1级,经100次-196~200℃热循环试验后,涂层无脱落现象。结论使用高纯度Zn_2TiO_4填料制得的无机热控涂层具有优异的热控性能,可以满足航天器高效、长寿命的热控设计需求,在航天器外表面具有良好的应用前景。
        The work aims to enrich and develop space-stable thermal control coatings of low solar absorptance(α_S) and high infrared emittance(ε_H), and to study inorganic thermal control coatings filled with zinc orthotitanate(Zn_2TiO_4). With oxalic acid, titanium tetrachloride and zinc chloride as raw materials, Zn_2TiO_4 powder was synthesized in the combined method of coprecipitation, calcination and acid washing. Crystal structure and microstructure of the Zn_2TiO_4 powder were characterized by XRD and SEM, respectively. Then inorganic thermal control coatings were obtained with Zn_2TiO_4 as filler and potassium silicate(K_2SiO_3) as adhesive. Cross cut test and thermal cycle test were adopted to study adhesion and thermo-environment adaptability of the coatings. High purity Zn_2TiO_4 filler was prepared through acid washing, its particle size ranged from 0.5 μm to 3 μm. The αS and εH of the Zn_2TiO_4/K_2SiO_3 inorganic thermal control coatings was 0.13±0.02 and 0.90±0.02, respectively. Adhesion of the coatings as tested in the cross cut test was grade 1. The coatings was free from spalling after 100 thermal cycles at -196~200 ℃. Zn_2TiO_4/K_2 SiO_3 inorganic thermal control coatings made from high purity Zn_2TiO_4 filler exhibits excellent thermal control performance, which is of good application prospects in external surface of spacecrafts as it can meet thermal control design requirements of spacecrafts which feature in high efficiency and long service life.
引文
[1]HARADA Y,DESHPANDE M.Requalification of white thermal control coatings[J].Requalification of white thermal control coatings,1994,10:109.
    [2]刘洋,杨耀东,杨丽,等.热循环对某热控涂层热辐射的影响[J].宇航材料工艺,2015,45(1):45-48.LIU Yang,YANG Yao-dong,YANG Li,et al.Thermal cycling effect on thermal radiation properties of one type of thermal control coatings[J].Aerospace materials&technology,2015,45(1):45-48.
    [3]李春林,辛世刚.星载缝隙波导天线热控涂层的制备工艺[J].电子机械工程,2016,32(1):40-43.LI Chun-lin,XIN Shi-gang.Preparation process of thermal control coating on space-borne slot waveguide antenna[J].Electro-mechanical engineering,2016,32(1):40-43.
    [4]王兵存,周斌,张立功,等.一种热稳定型有机热控涂层的耐高温特性研究[J].现代涂料与涂装,2014,17(5):32-34.WANG Bing-cun,ZHOU Bin,ZHANG Li-gong,et al.Study on heat resistance properties of a thermo-stabilized organic thermal control coating[J].Modern paint and finishing,2014,17(5):32-34.
    [5]范含林,范宇峰.航天器热控分系统对材料的需求分析[J].航天器环境工程,2010,27(2):135-138.FAN Han-lin,FAN Yu-feng.The demand of materials in the spacecraft thermal control subsystem[J].Spacecraft enveronment engineering,2010,27(2):135-138.
    [6]ZERLAUT G A,GILLIGAN J E,ASHFORD N A.Investigation of environmental effects on coatings for thermal control of large space vehicles[R].Washington D.C:National Aeronautics and Space Administration,1971.
    [7]GILLIGAN J E,HARADA Y.Development of space stable thermal control coatings for use on large space vehicles[R].Washington D.C:National Aeronautics and Space Administration,1976.
    [8]MELL R J,HARADA Y.Space stable thermal control coatings[R].Washington D.C:National Aeronautics and Space Administration,1977.
    [9]CERBUS C A,CARLIN P S.Evaluation of reformulated thermal control coatings in a simulated space environment.Part 1:YB-71[R].Washington D.C:National Aeronautics and Space Administration,1995.
    [10]于云,于洋,曹韫真,等.KS-Z无机热控涂层的空间环境稳定性试验及其应用效果分析[C]//第二届上海航天科技论坛暨上海市宇航学会2007学术年会.上海:[s.n.],2007:263-267.YU Yun,YU Yang,CAO Yun-zhen,et al.Analysis of stability of space environment and application of KS-Z inorganic thermal control coatings[C]//The second Shanghai aerospace science and Shanghai institute of astronautics2007 academic year.Shanghai:[s.n.],2007:263-267.
    [11]章俞之,曹韫真,吴岭南,等.几种热控涂层的真空-紫外辐照试验[J].航天器环境工程,2011,28(2):126-131.ZHANG Yu-zhi,CAO Yun-zhen,WU Ling-nan,et al.Ultraviolet irradiation tests of some thermal control coatings in vacuum[J].Spacecraft environment engineering,2011,28(2):126-131.
    [12]刘忠池.ZnO-TiO2基低温烧结微波介质陶瓷的改性及其机理研究[D].武汉:华中科技大学,2009.LIU Zhong-chi.Research of mechanism and modification of ZnO-TiO2 base microwave dielectric ceramics[D].Wuhan:Huazhong University of Science of Technology,2009.
    [13]张萍,李哲,赵子琪,等.制备纳米正钛酸锌粉及抗紫外性能研究[J].稀有金属材料与工程,2008,37:706-708.ZHANG Ping,LI Zhe,ZHAO Zi-qi,et al.Preparation of nanocrystalline zinc orthotitanate powders and their UVshielding performance[J].Rare metal materials and engineering,2008,37:706-708.
    [14]冯汉坤,蔡宗英,李运刚.ZnTiO3制备技术研究进展[J].湿法冶金,2014,33(1):4-6.FENG Han-kun,CAI Zong-ying,LI Yun-gang.Research progress on preparation technology of ZnTiO3[J].Hydrometallurgy of China,2014,33(1):4-6.
    [15]喻佑华,杨俊瑞,王相惠,等.ZnO-xTiO2系微波介电陶瓷的合成和介电性能[J].中国陶瓷,2008,44(5):42-44.YU You-hua,YANG Jun-rui,WANG Xiang-hui,et al.Synthesis and dielectric properties of ZnO-x TiO2 ceramic[J].China ceramics,2008,44(5):42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700