CZTS和CZTSSe纳米晶热注入法合成与性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Characterization of CZTS and CZTSSe Nanocrystals by Hot-injection Method
  • 作者:李云峰 ; 夏冬林 ; 秦可 ; 周逸琛
  • 英文作者:LI Yun-feng;XIA Dong-lin;QIN Ke;ZHOU Yi-chen;School of Materials Science and Engineering,Wuhan University of Technology;State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology;
  • 关键词:Cu2ZnSnS4 ; CZTS ; Cu2ZnSn(S ; Se)4 ; CZTSSe ; 纳米晶 ; 热注入
  • 英文关键词:Cu2ZnSnS4;;CZTS;;Cu2ZnSn(S,Se)4;;CZTSSe;;nanocrystals;;hot-injection
  • 中文刊名:WHGY
  • 英文刊名:Journal of Wuhan University of Technology
  • 机构:武汉理工大学材料科学与工程学院;武汉理工大学硅酸盐建筑材料国家重点实验室;
  • 出版日期:2017-06-30
  • 出版单位:武汉理工大学学报
  • 年:2017
  • 期:v.39;No.318
  • 基金:武汉市科技计划项目(2015010101010006);; 武汉理工大学优秀硕士学位论文培养基金(2016-YS-013)
  • 语种:中文;
  • 页:WHGY201706001
  • 页数:7
  • CN:06
  • ISSN:42-1657/N
  • 分类号:6-12
摘要
采用热注入法制备Cu_2ZnSnS4(CZTS)和Cu_2ZnSn(S,Se)4(CZTSSe)纳米晶,研究了不同反应温度对所制备的CZTS和CZTSSe纳米晶的晶体结构、化学组分、形貌及光学性能的影响。实验结果表明:未掺杂Se元素的CZTS纳米晶,当反应温度为230℃时为锌黄锡矿结构,当反应温度在240~280℃范围变化时,锌黄锡矿和纤锌矿结构共存,纳米晶形貌由纳米颗粒和纳米棒组成,其禁带宽度在1.54~1.62eV之间变化。对于掺杂Se元素的CZTS纳米晶,当反应温度在230~260℃范围变化时,为锌黄锡矿结构,而当反应温度为270~280℃时,CZTSSe纳米晶由锌黄锡矿结构和少量纤锌矿结构组成,纳米晶形貌由纳米颗粒组成,其禁带宽度比CZTS的禁带宽度低,禁带宽度在1.41~1.46eV之间变化。
        Cu_2 ZnSnS4(CZTS)and Cu_2 ZnSn(S,Se)_4(CZTSSe)nanocrystals(NCs)were synthesized by hot injection method,the influence of different reaction temperatures on the crystal structure,chemical composition,morphology and optical properties of CZTS and CZTSSe was investigated.The results showed that the CZTS NCs were kesterite structure when the reaction temperature was 230 ℃,but when the reaction temperature changed from 240 ℃to 280 ℃,the phase composition of the products was consisted of kesterite and wurtzite.And the morphology of NCs was consisted of nanoparticles and nanorods.The band gap of the NCs prepared at different reaction temperatures varied between 1.54 eV and 1.62 eV.For Se-doped CZTS NCs,when the reaction temperature was in the range of 230 ℃to 260 ℃,the CZTSSe NCs were kesterite structure.When the reaction temperature was 270℃to 280℃,the crystal phase was composed of kesterite structure and a small amount of wurtzite structure.The morphology of CZTSSe consists of nanoparticles.The band gap was lower than that of CZTS,which varied between 1.41 eV and 1.46 eV.
引文
[1]Todorov T K,Reuter K B,Mitzi D B.High-efficiency Solar Cell with Earth-abundant Liquid-processed Absorber[J].Advanced Materials,2010,22(20):E156-E159.
    [2]Wei H,Ye Z C,Li M,et al.Tunable Band Gap Cu2ZnSnS4xSe4(1-x)Nanocrystals:Experimental and First-principles Calculations[J].Cryst Eng Comm,2011,13(7):2222-2226.
    [3]Engberg S,Li Z G,Lek J Y,et al.Synthesis of Large CZTSe Nanoparticles Through a Two-step Hot-injection Method[J].RSC Adv,2015,5(117):96593-96600.
    [4]Riha S C,Parkinson B A,Prieto A L.Compositionally Tunable Cu2ZnSn(S1-xSex)4 Nanocrystals:Probing the Effect of Se-inclusion in Mixed Chalcogenide Thin Films[J].Journal of the American Chemical Society,2011,133(39):15272-15275.
    [5]Ahmad R,Brandl M,Distaso M,et al.A Comprehensive Study on the Mechanism Behind Formation and Depletion of Cu2ZnSnS4(CZTS)Phases[J].Cryst Eng Comm,2015,17(36):6972-6984.
    [6]Kim J,Hiroi H,Todorov T K,et al.High Efficiency Cu2ZnSn(S,Se)4Solar Cells by Applying a Double In2S3/CdS Emitter[J].Advanced Materials,2014,26(44):7427-7431.
    [7]Yang W C,Miskin C K,Hages C J,et al.Kesterite Cu2ZnSn(S,Se)4 Absorbers Converted from Metastable,Wurtzite-derived Cu2ZnSnS4 Nanoparticles[J].Chemistry of Materials,2014,26(11):3530-3534.
    [8]Chen S Y,Walsh A,Gong X G,et al.Classification of Lattice Defects in the Kesterite Cu2ZnSnS4and Cu2ZnSnSe4Earth-abundant Solar Cell Absorbers[J].Advanced Materials,2013,25(11):1522-1539.
    [9]Collord A D,Hillhouse H W.Composition Control and Formation Pathway of CZTS and CZTGS Nanocrystal Inks for Kesterite Solar Cells[J].Chemistry of Materials,2015,27(5):1855-1862.
    [10]Singh S,Liu P,Singh A,et al.Colloidal Cu2ZnSn(SSe)4(CZTSSe)Nanocrystals:Shape and Crystal Phase Control to Form Dots,Arrows,Ellipsoids,and Rods[J].Chemistry of Materials,2015,27(13):4742-4748.
    [11]Chesman A S R,Van Embden J,Duffy N W,et al.In Situ Formation of Reactive Sulfide Precursors in the One-pot,Multigram Synthesis of Cu2ZnSnS4 Nanocrystals[J].Crystal Growth&Design,2013,13(4):1712-1720.
    [12]Li M,Zhou W H,Guo J,et al.Synthesis of Pure Metastable Wurtzite CZTS Nanocrystals by Facile One-pot Method[J].The Journal of Physical Chemistry C,2012,116(50):26507-26516.
    [13]Shavel A,Ibá1ez M,Luo Z S,et al.Scalable Heating-up Synthesis of Monodisperse Cu2ZnSnS4 Nanocrystals[J].Chemistry of Materials,2016,28(3):720-726.
    [14]Guo Q J,Ford G M,Yang W C,et al.Fabrication of 7.2%Efficient CZTSSe Solar Cells Using CZTS Nanocrystals[J].Journal of the American Chemical Society,2010,132(49):17384-17386.
    [15]Miskin C K,Yang W C,Hages C J,et al.9.0%Efficient Cu2ZnSn(S,Se)4Solar Cells from Selenized Nanoparticle Inks[J].Progress in Photovoltaics:Research and Applications,2015,23(5):654-659.
    [16]Zou Y,Su X,Jiang J.Phase-controlled Synthesis of Cu2ZnSnS4 Nanocrystals:The Role of Reactivity Between Zn and S[J].Journal of the American Chemical Society,2013,135(49):18377-18384.
    [17]Liu X,Wang X L,Swihart M T.Composition-dependent Crystal Phase,Optical Properties,and Self-assembly of Cu-Sn-S Colloidal Nanocrystals[J].Chemistry of Materials,2015,27(4):1342-1348.
    [18]Zong K,Lu S H,Wang H,et al.The Synthesis of Cu2Zn(GexSn1-x)Se4 Nanocrystals with Tunable Band Gaps[J].Cryst Eng Comm,2013,15(35):6942-6947.
    [19]Fan F J,Wu L,Yu S H.EnergeticⅠ-Ⅲ-Ⅵ2and I2-Ⅱ-Ⅳ-Ⅵ4 Nanocrystals:Synthesis,Photovoltaic and Thermoelectric Applications[J].Energy&Environmental Science,2013,7(1):19-28.
    [20]Qu Y T,Zoppi G,Beattie N S.The Role of Nanoparticle Inks in Determining the Performance of Solution Processed Cu2ZnSn(S,Se)4Thin Film Solar Cells[J].Progress in Photovoltaics:Research and Applications,2016,24(6):836-845.
    [21]张美娟,刘晶冰,宗恺,等.Cu2ZnSnS4纳米晶微球的制备及其表征[J].无机化学学报,2013,29(2):333-337.
    [22]Ghorpade U V,Suryawanshi M P,Shin S W,et al.Wurtzite CZTS Nanocrystals and Phase Evolution to Kesterite Thin Film for Solar Energy Harvesting[J].Phys Chem Chem Phys,2015,17(30):19777-19788.
    [23]Ou K L,Fan J C,Chen J K,et al.Hot-injection Synthesis of Monodispersed Cu2ZnSn(SxSe1-x)4 Nanocrystals:Tunable Composition and Optical Properties[J].Journal of Materials Chemistry,2012,22(29):14667.
    [24]Liu Y,Yao D,Shen L,et al.Alkylthiol-enabled Se Powder Dissolution in Oleylamine at Room Temperature for the Phosphine-free Synthesis of Copper-based Quaternary Selenide Nanocrystals[J].Journal of the American Chemical Society,2012,134(17):7207-7210.
    [25]Lu X T,Zhuang Z B,Peng Q,et al.Wurtzite Cu2ZnSnS4 Nanocrystals:A Novel Quaternary Semiconductor[J].Chemical Communications,2011,47(11):3141.
    [26]Tan J M R,Lee Y H,Pedireddy S,et al.Understanding the Synthetic Pathway of a Single-phase Quarternary Semiconductor Using Surface-enhanced Raman Scattering:A Case of Wurtzite Cu2ZnSnS4 Nanoparticles[J].Journal of the American Chemical Society,2014,136(18):6684-6692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700