热电材料中的晶格热导率
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lattice Thermal Conductivity in Thermoelectric Materials
  • 作者:沈家骏 ; 方腾 ; 傅铁铮 ; 忻佳展 ; 赵新兵 ; 朱铁军
  • 英文作者:SHEN Jia-Jun;FANG Teng;FU Tie-Zheng;XIN Jia-Zhan;ZHAO Xin-Bing;ZHU Tie-Jun;State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University;
  • 关键词:热电材料 ; 晶格热导率 ; 热容 ; 弛豫时间 ; 综述
  • 英文关键词:thermoelectric materials;;lattice thermal conductivity;;specific heat;;relaxation time;;review
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:浙江大学材料科学与工程学院硅材料国家重点实验室;
  • 出版日期:2019-03-18 11:00
  • 出版单位:无机材料学报
  • 年:2019
  • 期:v.34;No.233
  • 基金:国家自然科学基金(51725102,51761135127,11574267)~~
  • 语种:中文;
  • 页:WGCL201903004
  • 页数:9
  • CN:03
  • ISSN:31-1363/TQ
  • 分类号:30-38
摘要
随着可再生能源及能源转换技术的快速发展,热电材料在发电及制冷领域的应用前景受到越来越广泛的关注。发展具有高热电优值材料的重要性日益突出,如何获得低晶格热导率是热电材料的研究重点之一。本文阐述了热容、声速及弛豫时间对晶格热导率的影响,介绍了本征低热导率热电材料所具有的典型特征,如强非谐性、弱化学键、本征共振散射及复杂晶胞结构等,并分析了通过多尺度声子散射降低已有热电材料晶格热导率的方法,其中包括点缺陷散射、位错散射、晶界散射、共振散射、电声散射等多种散射机制。此外,总结了几种预测材料最小晶格热导率的理论模型,对快速筛选具有低晶格热导率的热电材料具有一定的理论指导意义。最后,展望了如何获得低热导率热电材料的有效途径。
        With rapid development of sustainable energies and energy conversion technologies, application prospect of thermoelectric(TE) materials in power generation and cooling has received increasing attention. The requirement of improving TE materials with high figure of merit becomes much more important. How to obtain the low lattice thermal conductivity is one of the main concerns in TE materials. In this review, the influences of specific heat, phonon group velocity and relaxation time on the lattice thermal conductivity are discussed, respectively. Several typical features of TE materials with intrinsic low lattice thermal conductivity are introduced, such as strong anharmonicity, weak chemical bonds and complex primitive cells. Introducing multiscale phonon scatterings to reduce the lattice thermal conductivity of known TE materials is also presented and discussed, including but not limited to point defect scattering,dislocation scattering, boundary scattering, resonance scattering and electron-phonon scattering. In addition, some theoretical models of the minimum lattice thermal conductivity are analyzed, which has certain theoretical significance for rapid screening of TE materials with low lattice thermal conductivity. Finally, the efficient ways to obtain the low lattice thermal conductivity for TE property optimization are proposed.
引文
[1]BELLLE.Cooling,heating,generatingpower,andrecovering waste heat with thermoelectric systems. Science, 2008, 321(5895):1457–1461.
    [2]SNYDER G J, TOBERER E S. Complex thermoelectric materials.Nature Materials, 2008, 7:101–110.
    [3]XIN J Z, TANG Y L, LIU Y T, et al. Valleytronics in thermoelectric materials. npj Quantum Materials, 2018, 3(1):9.
    [4]LIW,ZHENGLL,GEBH,etal.PromotingSnTeasan eco-friendlysolutionforp-PbTethermoelectricviabandconvergence and interstitial defects. Advanced Materials, 2017, 29(17):1605887?1?8.
    [5]BISWASK,HEJQ,BLUMID,etal.High-performancebulk thermoelectricswithall-scalehierarchicalarchitectures.Nature,2012, 489:414–418.
    [6]ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals.Nature, 2014, 508:373–377.
    [7]CHEN Z W, JIAN Z Z, LI W, et al. Lattice dislocations enhancing thermoelectricPbTeinadditiontobandconvergence.Advanced Materials, 2017, 29(23):1606768?1?8.
    [8]KIMSI,LEEKH,MUNHA,etal.Densedislocationarrays embeddedingrainboundariesforhigh-performancebulkthermoelectrics. Science, 2015, 348(6230):109–114.
    [9]CHENZW,ZHANGXY,PEIYZ.Manipulationofphonon transportinthermoelectrics.AdvancedMaterials,2018,30(17):1705617?1?12.
    [10]HE Y, DAY T, ZHANG T S, et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Advanced Materials, 2014, 26(23):3974–3978.
    [11]LIU H L, SHI X, XU F F, et al. Copper ion liquid-like thermoelectrics. Nature Materials, 2012, 11:422–425.
    [12]VINING C B, LASKOW W, HANSON J O, et al. Thermoelectric propertiesofpressure-sinteredSi0.8Ge0.2thermoelectricalloys.Journal of Applied Physics, 1991, 69(8):4333–4340.
    [13]PEI Y Z, LALONDE A, IWANAGA S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy&Environmental Science, 2011, 4(6):2085–2089.
    [14]ZEVALKINK A, TOBERER E S, ZEIER W G., et al. Ca3AlSb3:an inexpensive,non-toxicthermoelectricmaterialforwasteheatrecovery. Energy&Environmental Science, 2011, 4(2):510–518.
    [15]MAY A F, TOBERER E S, SARAMAT A, et al. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-xGe30+x.Physical Review B, 2009, 80(12):125205?1?12.
    [16]COX C A, TOBERER E S, LEVCHENKO A A, et al. Structure,heatcapacity,andhigh-temperaturethermalpropertiesof Yb14Mn1-xAlxSb11. Chemistry of Materials, 2009, 21(7):1354–1360.
    [17]SLACKGA.Thethermalconductivityofnonmetalliccrystals.Solid State Physics, 1979, 34:1–71.
    [18]TOBERERES,ZEVALKINKA,SNYDERGJ.Phononengineering through crystal chemistry. Journal of Materials Chemistry,2011, 21(40):15843–15852.
    [19]WANG Y, HU Y J, FIRDOSY S A, et al. First-principles calculations of lattice dynamics and thermodynamic properties for Yb14MnSb11.Journal of Applied Physics, 2018, 123(4):045102?1?10.
    [20]BROWNSR,KAUZLARICHSM,GASCOINF,etal.Yb14MnSb11:?newhighefficiencythermoelectricmaterialfor power generation. Chemistry of Materials, 2006, 18(7):1873–1877.
    [21]CHEN Z, LI D C, DENG S P, et al. Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal. Physica B:Condensed Matter, 2018, 538:154–159.
    [22]YING P J, LI X, WANG Y C, et al. Hierarchical chemical bonds contributingtotheintrinsicallylowthermalconductivityinα-MgAgSbthermoelectricmaterials.AdvancedFunctionalMaterials, 2016, 27(1):1604145?1?8.
    [23]LI J Q, LI L F, SONG S H, et al. High thermoelectric performance ofGeTe–Ag8Ge Te6eutecticcomposites.JournalofAlloysand Compounds, 2013, 565:144–147.
    [24]FUJIKANEM,KUROSAKIK,MUTAH,etal.Thermoelectric properties of Ag8Ge Te6. Journal of Alloys and Compounds, 2005,396(1):280–282.
    [25]HOU Y H, CHANG L S. Optimization on the figure-of-merit of p-typeBa8Ga16Ge30type-IclathrategrownviatheBridgman methodbyfinetuningGa/Geratio. JournalofAlloysandCompounds, 2018, 736:108–114.
    [26]YAN X L, IKEDA M, ZHANG L, et al. Suppression of vacancies boosts thermoelectric performance in type-I clathrates. Journal of Materials Chemistry A, 2018, 6(4):1727–1735.
    [27]BEEKMAN M, VANDERGRAAFF A. High-temperature thermal conductivity of thermoelectric clathrates. Journal of Applied Physics, 2017, 121(20):205105.
    [28]GONZALEZ-ROMERO R L, ANTONELLI A. Estimating carrier relaxation times in the Ba8Ga16Ge30 clathrate in the extrinsic regime.Physical Chemistry Chemical Physics, 2017, 19(4):3010–3018.
    [29]CHRISTENSEN M, ABRAHAMSEN A B, CHRISTENSEN N B,et al. Avoided crossing of rattler modes in thermoelectric materials.Nature Materials, 2008, 7:811–815.
    [30]CALLAWAY J. Model for lattice thermal conductivity at low temperatures. Physical Review, 1959, 113(4):1046–1051.
    [31]CHUNG J D, MCGAUGHEY A J H, KAVIANY M. Role of phonon dispersion in lattice thermal conductivity modeling. Journal of Heat Transfer, 2004, 126(3):376–380.
    [32]SLACK G A, GALGINAITIS S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Physical Review, 1964,133(1A):A253–A268.
    [33]HEREMANSJP.Thermoelectricmaterials:theanharmonicity blacksmith. Nature Physics, 2015, 11:990–991.
    [34]QIU W J, XI L L, WEI P, et al. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. Proceedings of the National Academy of Sciences, 2014,111(42):15031–15035.
    [35]TYAGIK,GAHTORIB,BATHULAS,etal.Thermoelectric propertiesofCu3SbSe3withintrinsicallyultralowlatticethermal conductivity.JournalofMaterialsChemistryA,2014,2(38):15829–15835.
    [36]DELAIRE O, MA J, MARTY K, et al. Giant anharmonic phonon scattering in PbTe. Nature Materials, 2011, 10:614–619.
    [37]LEE S, ESFARJANI K, LUO T F, et al. Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 2014, 5:3525?1?8.
    [38]MURPHY R M, MURRAYéD, FAHY S, et al. Ferroelectric phase transition and the lattice thermal conductivity of Pb1-xGexTe alloys.Physical Review B, 2017, 95(14):144302?1?8.
    [39]CHENY,HEB,ZHUTJ,etal.Thermoelectricpropertiesof non-stoichiometric AgSbTe2 based alloys with a small amount of GeTeaddition.JournalofPhysicsD:AppliedPhysics,2012,45(11):115302.
    [40]ZHANG Y, KE X Z, CHEN C F, et al. Thermodynamic properties of PbTe, PbSe, and PbS:first-principles study. Physical Review B,2009, 80(2):024304?1?12.
    [41]MILLER A J, SAUNDERS G A, YOGURTCU Y K. Pressure dependences of the elastic constants of PbTe, SnTe and Ge0.08Sn0.92Te.JournalofPhysicsC:SolidStatePhysics,1981,14(11):1569–1584.
    [42]ALEXANDER F Z, VOLKER L D, RALF P S, et al. Ab initio latticedynamicsandthermochemistryoflayeredbismuthtelluride(Bi2Te3).JournalofPhysics:CondensedMatter,2016,28(11):115401?1?7.
    [43]RINCóN C, VALERI-GIL M L, WASIM S M. Room-temperature thermalconductivityandgrüneisenparameteroftheI-III-VI2chalcopyrite compounds. Physica Status Solidi(A), 1995, 147(2):409–415.
    [44]WANG H F, JIN H, CHU W G, et al. Thermodynamic properties ofMg2SiandMg2Geinvestigatedbyfirstprinciplesmethod.Journal of Alloys and Compounds, 2010, 499(1):68–74.
    [45]BERNSTEIN N, FELDMAN J L, SINGH D J. Calculations of dynamical properties of skutterudites:thermal conductivity, thermal expansivity,andatomicmean-squaredisplacement.PhysicalReview B, 2010, 81(13):134301?1?11.
    [46]BHASKAR A, PAI Y H, WU W M, et al. Low thermal conductivityandenhancedthermoelectricperformanceofnanostructured Al-dopedZnTe.CeramicsInternational,2016,42(1,PartB):1070–1076.
    [47]KATRE A, TOGO A, TANAKA I, et al. First principles study of thermal conductivity cross-over in nanostructured zinc-chalcogenides.Journal of Applied Physics, 2015, 117(4):045102?1?6.
    [48]NUNES O A C. Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate. Journal of Applied Physics,2014, 115(23):233715?1?7.
    [49]REEBER R R. Thermal expansion of some group IV elements and ZnS. Physica Status Solidi(a), 1975, 32(1):321–331.
    [50]QIN L, TEO K L, SHEN Z X, et al. Raman scattering of Ge/Si dot superlattices under hydrostatic pressure. Physical Review B, 2001,64(7):075312?1?5.
    [51]SILPAWILAWAN W, KUROSAKI K, OHISHI Y, et al. FeNbSb p-type half-Heusler compound:beneficial thermomechanical properties and high-temperature stability for thermoelectrics. Journal of Materials Chemistry C, 2017, 5(27):6677–6681.
    [52]BOSONI E, SOSSO G C, BERNASCONI M. Grüneisen parameters and thermal conductivity in the phase change compound GeTe.Journal of Computational Electronics, 2017, 16(4):997–1002.
    [53]LI W, LIN S, GE B, et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science,2016, 3(11):1600196?1?7.
    [54]CALLAWAY J, VON B, HANS C. Effect of point imperfections onlatticethermalconductivity.PhysicalReview,1960,120(4):1149–1154.
    [55]HAO F, QIU P F, TANG Y S, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between100and300℃.Energy&EnvironmentalScience,2016,9(10):3120–3127.
    [56]HULP,ZHUTJ,LIUXH,etal.Pointdefectengineeringof high-performance bismuth-telluride-based thermoelectric materials.Advanced Functional Materials, 2014, 24(33):5211–5218.
    [57]PEI Y Z, SHI X Y, LALONDA A, et al. Convergence of electronic bandsforhighperformancebulkthermoelectrics.Nature,2011,473(7345):66–69.
    [58]QIN Y T, QIU P F, SHI X, et al. Thermoelectric properties for CuInTe2–xSx(x=0, 0.05, 0.1, 0.15)solid solution. Journal of Inorganic Materials, 2017, 32(11):1171–1176.
    [59]JIANG G Y, HE J, ZHU T J, et al. High performance Mg2(Si,Sn)solidsolutions:apointdefectchemistryapproachtoenhancing thermoelectricproperties.AdvancedFunctionalMaterials,2014,24(24):3776–3781.
    [60]LIU X H, ZHU T J, WANG H, et al. Low electron scattering potentialsinhighperformanceMg2Si0.45Sn0.55basedthermoelectric solid solutions with band convergence. Advanced Energy Materials,2013, 3(9):1238–1244.
    [61]TRIPATHIMN,BHANDARICM.High-temperaturethermoelectricperformanceofSi-Gealloys.JournalofPhysics:Condensed Matter, 2003, 15(31):5359–5370.
    [62]FU C G, ZHU T J, PEI Y Z, et al. High band degeneracy contributestohighthermoelectricperformanceinp-typehalf-Heusler compounds.AdvancedEnergyMaterials,2014,4(18):1400600?1?6.
    [63]YUJJ,XIAKY,ZHAOXB,etal.Highperformancep-type half-Heuslerthermoelectricmaterials.JournalofPhysicsD:Applied Physics, 2018, 51(11):113001.
    [64]SHEN J J, FU C G, LIU Y T, et al. Enhancing thermoelectric performance of FeNbSb half-Heusler compound by Hf-Ti dual-doping.Energy Storage Materials, 2018, 10:69–74.
    [65]ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiencythermoelectricmaterials.AdvancedMaterials,2017, 29(14):1605884?1?26.
    [66]FU C G, WU H J, LIU Y T, et al. Enhancing the figure of merit of heavy-bandthermoelectricmaterialsthroughhierarchicalphonon scattering. Advanced Science, 2016, 3(8):1600035?1?6.
    [67]ZHU T J, FU C G, XIE H H, et al. High efficiency half-Heusler thermoelectricmaterialsforenergyharvesting.AdvancedEnergy Materials, 2015, 5(19):1500588?1?7.
    [68]FU C G, BAI S Q, LIU Y T, et al. Realizing high figure of merit in heavy-bandp-typehalf-Heuslerthermoelectricmaterials.Nat.Commun., 2015, 6:8144.
    [69]XIE H H, WANG H, PEI Y Z, et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectricmaterials.AdvancedFunctionalMaterials,2013,23(41):5123–5130.
    [70]YU J J, FU C G, LIU Y T, et al. Unique role of refractory ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials. Advanced Energy Materials, 2018, 8(1):1701313?1?8.
    [71]XIAKY,LIUYT,ANANDS,etal.Enhancedthermoelectric performance in 18-electron Nb0.8CoSb half-heusler compound with intrinsicNbvacancies.AdvancedFunctionalMaterials,2018,28(9):1705845?1?7.
    [72]LI W, LIN S Q, ZHANG X Y, et al. Thermoelectric properties of Cu2SnSe4withintrinsicvacancy.ChemistryofMaterials,2016,28(17):6227–6232.
    [73]KLEMENS P G. The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society. Section A,1955, 68(12):1113–1128.
    [74]ZHANG S N, HE J, JI X H, et al. Effects of ball-milling atmosphereonthethermoelectricpropertiesofTAGS-85compounds.Journal of Electronic Materials, 2009, 38(7):1142–1147.
    [75]LI Y, MEI D Q, WANG H, et al. Reduced lattice thermal conductivityinnanograinedNa-dopedPbTealloysbyballmillingand semisolidpowderprocessing.MaterialsLetters,2015,140:103–106.
    [76]HONGM,CHENZG,ZOUJ.Fundamentalandprogressof Bi2Te3-basedthermoelectricmaterials.ChinesePhysicsB,2018,27(4):048403?1?46.
    [77]XIE J, OHISHI Y, ICHIKAWA S, et al. Naturally decorated dislocationscapableofenhancingmultiple-phononscatteringin Si-basedthermoelectriccomposites.JournalofAppliedPhysics,2018, 123(11):115114?1?8.
    [78]YU Y, HE D S, ZHANG S Y, et al. Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering. Nano Energy, 2017, 37:203–213.
    [79]XIE W J, HE J, KANG H J, et al. Identifying the specific nanostructuresresponsibleforthehighthermoelectricperformanceof(Bi,Sb)2Te3 nanocomposites. Nano Letters, 2010, 10(9):3283–3289.
    [80]YANG X Y, WU J H, REN D D, et al. Microstructure and thermoelectricpropertiesofp-typeSi80Ge20B0.6-SiCnanocomposite.Journal of Inorganic Materials, 2016, 31(9):997–1003.
    [81]YU C, XIE H H, FU C G, et al. High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. Journal of Materials Research, 2012, 27(19):2457–2465.
    [82]HU L P, WU H J, ZHU T J, et al. Tuning multiscale microstructurestoenhancethermoelectricperformanceofn-typebismuth-telluride-based solid solutions. Advanced Energy Materials,2015, 5(17):1500411?1?13.
    [83]HEJQ,GIRARDSN,KANATZIDISMG,etal.Microstructure-latticethermalconductivitycorrelationinnanostructured PbTe0.7S0.3 thermoelectric materials. Advanced Functional Materials, 2010, 20(5):764–772.
    [84]XIN J Z, WU H J, LIU X H, et al. Mg vacancy and dislocation strainsasstrongphononscatterersinMg2Si1-xSbxthermoelectric materials. Nano Energy, 2017, 34:428–436.
    [85]SHI X, BAI S Q, XI L L, et al. Realization of high thermoelectric performance in n-type partially filled skutterudites. Journal of Materials Research, 2011, 26(15):1745–1754.
    [86]KEPPENS V, MANDRUS D, SALES B C, et al. Localized vibrational modes in metallic solids. Nature, 1998, 395:876–878.
    [87]DUAN B, YANG J, SALVADOR J R, et al. Electronegative guests in CoSb3. Energy&Environmental Science, 2016, 9(6):2090–2098.
    [88]SAMANTA M, PAL K, PAL P, et al. Localized vibrations of bi bilayerleadingtoultralowlatticethermalconductivityandhigh thermoelectricperformanceinweaktopologicalinsulatorn-type Bi Se. Journal of the American Chemical Society, 2018, 140(17):5866–5872.
    [89]UHER C, YANG J, HU S, et al. Transport properties of pure and dopedMNiSn(M=Zr,Hf).PhysicalReviewB,1999,59(13):8615–8621.
    [90]LI J F, LIU W S, ZHAO L D, et al. High-performance nanostructuredthermoelectricmaterials.NPGAsiaMaterials,2010,2(4):152–158.
    [91]FANGT,ZHAOXB,ZHUTJ.BandStructuresandtransport properties of high-performance half-heusler thermoelectric materials by first principles. Materials, 2018, 11(5):847.
    [92]TANG Y L, LI X S, MARTIN L H J, et al. Impact of Ni content on thethermoelectricpropertiesofhalf-HeuslerTiNiSn.Energy&Environmental Science, 2018, 11(2):311–320.
    [93]ZHU T J, YU G T, XU J, et al. The role of electron-phonon interaction in heavily doped fine-grained bulk silicons as thermoelectric materials. Advanced Electronic Materials, 2016, 2(8):1600171.
    [94]ABELES B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Physical Review, 1963, 131(5):1906–1911.
    [95]CLARKEDR.Materialsselectionguidelinesforlowthermal conductivity thermal barrier coatings. Surface and Coatings Technology, 2003, 163:67–74.
    [96]CAHILLDG,POHLRO.Heatflowandlatticevibrationsin glasses. Solid State Communications, 1989, 70(10):927–930.
    [97]CAHILLDG,WATSONSK,POHLRO.Lowerlimittothe thermalconductivityofdisorderedcrystals.PhysicalReviewB,1992, 46(10):6131–6140.
    [98]ALLEN P B, DU X Q, MIHALY L, et al. Thermal conductiity of insulatingBi2Sr2YCu2O8andsuperconductingBi2Sr2CaCu2O8:failure of the phonon-gas picture. Physical Rview B, 1994, 49(13):9073–9079.
    [99]FELDMAN J L, ALLEN P B, BICKHAM S R. Numerical study of low-frequency vibrations in amorphous silicon. Physical Review B,1999, 59(5):3551–3559.
    [100]AGNE M T, HANUS R, SNYDER G J. Minimum thermal conductivity in the context of diffuson-mediated thermal transport. Energy&Environmental Science, 2018, 11(3):609–616.
    [101]POHL R O. Lattice vibrations of glasses. Journal of Non-Crystalline Solids, 2006, 352(32):3363–3367.
    [102]FU C G, ZHU T J, LIU Y T, et al. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materialsforfigureofmeritzT>1.Energy&EnvironmentalScience,2015, 8(1):216–220.
    [103]WEI P, YANG J, GUO L, et al. Minimum thermal conductivity in weaktopologicalinsulatorswithbismuth-basedstackstructure.Advanced Functional Materials, 2016, 26(29):5360–5367.
    [104]RASCHE B, ISAEVA A, RUCK M, et al. Stacked topological insulator built from bismuth-based graphene sheet analogues. Nature Materials, 2013, 12(5):422–425.
    [105]PAULYC,RASCHEB,KOEPERNIKK,etal.Subnanometre-wide electron channels protected by topology. Nature Physics,2015, 11(4):338–343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700