ZrO_2增韧Al_2O_3颗粒增强Fe45复合材料拉伸断裂的有限元-离散元耦合方法仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tensile fracture simulation of ZrO_2 toughened Al_2O_3 particle/Fe45composite based on finite-discrete element method
  • 作者:信振洋 ; 苗文成 ; 王悦 ; 陈华辉
  • 英文作者:XIN Zhenyang;MIAO Wencheng;WANG Yue;CHEN Huahui;School of Mechanical Electronic and Information Engineering,China University of Mining and Technology(Beijing);
  • 关键词:有限元-离散元耦合方法 ; 颗粒增强金属复合材料 ; 拉伸断裂 ; 代表性体积单元 ; 内聚力单元
  • 英文关键词:finite-discrete element method(FEM-DEM);;particle reinforced metal composites;;tensile fracture;;representative volume element;;cohesive element
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:中国矿业大学(北京)机电与信息工程学院;
  • 出版日期:2019-06-15
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(51571210)
  • 语种:中文;
  • 页:FUHE201906014
  • 页数:9
  • CN:06
  • ISSN:11-1801/TB
  • 分类号:135-143
摘要
采用有限元-离散元耦合方法(FEM-DEM方法),进行了氧化锆增韧氧化铝颗粒增强Fe45复合材料(ZrO_2-Al_2O_3/Fe45)轴对称代表体元模型的拉伸断裂仿真分析。分析了FEM-DEM模型对单元尺寸的敏感性,结果表明采用,二阶实体单元加双零厚度内聚力单元的FEM-DEM模型降低了计算结果对单元尺寸的敏感性。ZrO_2-Al_2O_3/Fe45复合材料拉伸断裂的模拟结果表明,颗粒形状对裂纹的扩展会产生较大影响,复合材料的开裂首先在垂直于拉力方向的界面处发生,界面裂纹扩展至基体应力集中处之后基体发生开裂,裂纹由开裂的界面和基体裂纹共同组成。
        Based on the combined finite-discrete element method(FEM-DEM),the tensile fracture of zirconia toughened alumina particle reinforced Fe45 composites(ZrO_2-Al_2O_3/Fe45)was simulated using axisymmetric representative volume elements.The mesh sensitivity of FEM-DEM models was analyzed.The results show that the second-order solid elements coupling double zero thickness cohesive elements FEM-DEM model reduces the mesh sensitivity.The tensile fracture simulation results of ZrO_2-Al_2O_3/Fe45 show that particle shapes have a great influence on the crack propagation.The crack of ZrO_2-Al_2O_3/Fe45 initiates at the interface which is perpendicular to the direction of tension force,then matrix crack occurs when the interface crack extends to the stress concentration position of the matrix.The cracks of the composites consist of the interfaces crack and matrix crack.
引文
[1]王振清,雷红帅,王晓强,等,纳米TiO2颗粒弱界面增强树脂基复合材料宏观力学行为有限元模拟[J].复合材料学报,2013,30(1):236-243.WANG Zhenqing,LEI Hongshuai,WANG Xiaoqiang,et al.Finite element simulation for macroscopic mechanical behavior of nano TiO2 particulate reinforced epoxy composites with weak interface[J].Acta Materiae Compositae Sinica,2013,30(1):236-243(in Chinese).
    [2]潘清,周储伟.裂纹扩展独立于网格的一种有限元单元子划分方法[J].固体力学学报,2013(01):13-19.PAN Qing,ZHOU Chuwei.A finite element sub-partition method for simulating crack extension independent to global mesh[J].Chinese Journal of Solid Mechanics,2013(01):13-19(in Chinese).
    [3]WANG X,ZHANG M,JIVKOV A P.Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete[J].International Journal of Solids and Structures,2016,80:310-333.
    [4]XU W,XU B,GUO F.Elastic properties of particle-reinforced composites containing nonspherical particles of high packing density and interphase:DEM-FEM simulation and micromechanical theory[J].Computer Methods in Applied Mechanics and Engineering,2017,326:122-143.
    [5]ZHOU W,TANG L,LIU X,et al.Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a ratedependent cohesive model[J].International Journal of Impact Engineering,2016,95:165-175.
    [6]WANG X,YANG J,LIU Q,et al.A comparative study of numerical modelling techniques for the fracture of brittle materials with specific reference to glass[J].Engineering Structures,2017,152:493-505.
    [7]MUNJIZA A,JOHN N W M.Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms[J].Engineering Fracture Mechanics,2002,69(2):281-295.
    [8]MAHABADI O K,GRASSELLI G,MUNJIZA A.Y-GUI:A graphical user interface and pre-processor for the combined finite-discrete element code,Y2D,incorporating material heterogeneity[J].Computers&Geosciences,2010,36(2):241-252.
    [9]HAMDI P,STEAD D,ELMO D.Damage characterization during laboratory strength testing:A 3D-finite-discrete element approach[J].Computers and Geotechnics,2014,60:33-46.
    [10]WEI ZHOU W Y G M.Combined finite-discrete element method modeling of rockslides[J].Engineering Computations:International Journal for Computer Aided Engineering and Software,2016,33(5):1530-1559.
    [11]雷周.FEM与DEM耦合方法研究及在汽车玻璃冲击破坏问题中的应用[D].广州:华南理工大学,2011.LEI Zhou.Combined finite-discrete element methods and its application on impact fracture mechanism of automobile glass[D].Guangzhou:South China University of Technology,2011(in Chinese).
    [12]MAHABADI O,KAIFOSH P,MARSCHALL P,et al.Three-dimensional FDEM numerical simulation of failure processes observed in Opalinus Clay laboratory samples[J].Journal of Rock Mechanics and Geotechnical Engineering,2014,6(6):591-606.
    [13]ZHAO Q,LISJAK A,MAHABADI O,et al.Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method[J].Journal of Rock Mechanics and Geotechnical Engineering,2014,6(6):574-581.
    [14]GUO L,XIANG J,LATHAM J,et al.A numerical investigation of mesh sensitivity for a new three-dimensional fracture model within the combined finite-discrete element method[J].Engineering Fracture Mechanics,2016,151:70-91.
    [15]YANG Z J.Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi brittle materials[J].International Journal of Solids and Structures,2009,46:3222-3234.
    [16]WANG X F.Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores[J].Construction and Building Materials,2015,75:35-45.
    [17]WANG X.Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores:A size effect study[J].Construction and Building Materials,2015,80:262-272.
    [18]KERN F,PALMERO P,MARRO F G,et al.Processing of alumina-zirconia composites by surface modification route with enhanced hardness and wear resistance[J].Ceramics International,2015,41(1):889-898.
    [19]ZHENG K,GAO Y,LI Y,et al.Three-body abrasive wear resistance of iron matrix composites reinforced with ceramic particles[J].Proceedings of the Institution of Mechanical Engineers:Part J-Journal of Engineering Tribology,2013,228(1):3-10.
    [20]王传薪,刘东明,王建刚,等.B4C增强铝基复合材料力学性能有限元模拟[J].复合材料学报,2016,33(10):2253-2260.WANG Chuanxin,LIU Dongming,WANG Jian’gang,et al.Simulation of mechanical behaviors of B4C reinforced Al matrix composites by finite element[J].Acta Materiae Compositae Sinica,2016,33(10):2253-2260(in Chinese).
    [21]SEUPEL A,ECKNER R,BURGOLD A,et al.Experimental characterization and damage modeling of a particle reinforced TWIP-steel matrix composite[J].Materials Science&Engineering A,2016,662:342-355.
    [22]SHEN N,Yl C.Mechanical behavior of particle reinforced metal matrix composites[J].Advanced Engineering Materials,2001,3(6):357-370.
    [23]YUAN M N,YANG Y Q,LI C,et al.Numerical analysis of the stress-strain distributions in the particle reinforced metal matrix composite SiC/6064Al[J].Materials&Design,2012,38:1-6.
    [24]孙翔,刘传奇,薛世峰.有限元与离散元混合法在裂纹扩展中的应用[J].中国石油大学学报(自然科学版),2013(03):126-130.SUN Xiang,LIU Chuanqi,XUE Shifeng.Application of combined finite-discrete element method for crack propagation[J].Journal of China University of Petroleum(Natural Science Edition),2013(03):126-130(in Chinese).
    [25]沈珉,郝培.颗粒增强复合材料非理想界面刚度和有效模量的理论估计[J].复合材料学报,2016,33(1):189-197.SHEN Min,HAO Pei.Theoretical estimation of imperfect interfacial stiffness and effective modulus in particle reinforced composites[J].Acta Materiae Compositae Sinica,2016,33(1):189-197(in Chinese).
    [26]GREEN D J.An introduction to the mechanical properties of ceromics[M].UK:Cambridge University Press,1998:264-266.
    [27]ZIRCONIA-TOUGHENED-ALUMINA SPECIFICATIONS[EB/OL].(2014-12-8)[2018-5-24].http://www.ceramics.net.
    [28]YAN Y W,GENG L,LI A B.Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites[J].Materials Science and Engineering A,2007,448(1-2):315-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700