上海市苏州河滨水带不同类型绿地和非绿地夏季小气候因子及人体热舒适度分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analyses on microclimatic factors and human thermal comfort of different types of greenbelt and non-greenbelt in riparian zone of Suzhou River in Shanghai City in summer
  • 作者:薛申亮 ; 刘滨谊
  • 英文作者:XUE Shenliang;LIU Binyi;College of Architecture and Urban Planning,Tongji University;
  • 关键词:滨水带 ; 绿地 ; 非绿地 ; 小气候因子 ; 人体热舒适度评价
  • 英文关键词:riparian zone;;greenbelt;;non-greenbelt;;microclimatic factor;;human thermal comfort evaluation
  • 中文刊名:ZWZY
  • 英文刊名:Journal of Plant Resources and Environment
  • 机构:同济大学建筑与城市规划学院;
  • 出版日期:2018-05-25
  • 出版单位:植物资源与环境学报
  • 年:2018
  • 期:v.27
  • 基金:国家自然科学基金重点项目(51338007)
  • 语种:中文;
  • 页:ZWZY201802014
  • 页数:9
  • CN:02
  • ISSN:32-1339/S
  • 分类号:110-118
摘要
对上海市苏州河西岸滨水带不同类型绿地(6个测点)和非绿地(4个测点)测点夏季空气温度、空气相对湿度、太阳辐射和风速4个主要小气候因子的差异进行了比较,并对各测点的人体热舒适度进行了主观和客观评价。结果表明:各测点的空气温度、空气相对湿度、太阳辐射和风速存在明显差异,平均值分别为34.1℃~37.9℃、38.2%~48.4%、138.5~506.7 W·m~(-2)和0.0~1.7 km·h~(-1)。人体热舒适度的主观评价结果表明受访者普遍认为各测点气温偏高、湿度大、太阳辐射一般、风速小,人体舒适度较差;客观评价结果表明各测点的预测平均投票(PMV)、生理等效温度(PET)和标准有效温度(SET*)分别为2.9~4.9、35.8℃~50.0℃和26.9℃~38.7℃。在绿地测点中,P3测点(非临水-灌草-半开敞空间)的空气温度平均值最低,P5测点(临水-乔灌草-半围合空间)的空气相对湿度平均值最低、但风速平均值最大,P2测点(临水-乔草-半开敞空间)的太阳辐射平均值及PMV、PET和SET*值均最低;在非绿地测点中,P10测点(临水-木制硬质铺装-开敞空间)的空气温度平均值、太阳辐射平均值及PMV、PET和SET*值均最低,P9测点(非临水-板石制硬质铺装-开敞空间)的空气相对湿度平均值最低,P4测点(临水-砖石制硬质铺装-开敞空间)的风速平均值最大。总体而言,与非绿地测点相比,绿地测点的空气温度、太阳辐射及PMV、PET和SET*值均较低,但风速较高。综上所述,受访者在绿地中的人体热舒适感觉优于非绿地,因此,建议在上海市苏州河滨水带规划设计中优先采用绿地形式,尤其是临水-乔草-半开敞空间和临水-乔灌草-半围合空间的绿地形式。
        Differences in four main microclimatic factors of air temperature,air relative humidity,solar radiation,and wind speed at measuring points of different types of greenbelt( six measuring points) and non-greenbelt( four measuring points) in riparian zone of west bank of Suzhou River in Shanghai City in summer were analyzed,and subjective and objective evaluations of human thermal comfort of each measuring point were conducted. The results show that there are obvious differences in air temperature,air relative humidity,solar radiation,and wind speed of each measuring point with the averages of34. 1 ℃-37. 9 ℃,38. 2%-48. 4%,138. 5-506. 7 W·m-2,and 0. 0~(-1). 7 km·h~(-1),respectively. The result of subjective evaluation of human thermal comfort shows that interviewees generally believe that at each measuring point,air temperature is slightly high,humidity is high,solar radiation is general,wind speed is low,and human comfort is poor. The result of objective evaluation shows that predicted mean vote( PMV),physiological equivalent temperature( PET),and standard effective temperature( SET*)of each measuring point are 2. 9-4. 9,35. 8 ℃-50. 0 ℃,and 26. 9 ℃-38. 7 ℃,respectively. Among greenbelt measuring points,the average of air temperature is the lowest at P3 measuring point( non by water-shrub-herb-semi-open space); the average of air relative humidity is the lowest at P5 measuring point( by water-arbor-shrub-herb-semi-enclosed space),while the average of its wind speed is the highest; the average of solar radiation,and PMV,PET and SET * values are all the lowest at P2 measuring point( by water-arbor-herb-semi-open space). Among non-greenbelt measuring points,the averages of air temperature and solar radiation,and PMV,PET and SET* values are all the lowest at P10 measuring point( by water-rigid pavement of wood-open space); the average of air relative humidity is the lowest at P9 measuring point( non by water-rigid pavement of slabstone-open space);while the average of wind speed is the highest at P4 measuring point( by water-rigid pavement of masonry-open space). In general,compared with non-greenbelt measuring point,air temperature,solar radiation,and PMV,PET and SET* values in greenbelt measuring point are all lower,but the average of its wind speed is higher. In conclusion,human thermal comfort of interviewees in greenbelt is superior to non-greenbelt,therefore,it is suggested that greenbelt mode should be preferred in planning and designing of riparian zone of Suzhou River in Shanghai City,especially the greenbelt modes of by waterarbor-herb-semi-open space and by water-arbor-shrub-herb-semi-enclosed space.
引文
[1]HATHWAY E A,SHARPLES S.The interaction of rivers and urban form in mitigating the Urban Heat Island effect:a UK case study[J].Building and Environment,2012,58:14-22.
    [2]彭保发,石忆邵,王贺封,等.城市热岛效应的影响机理及其作用规律:上海市为例[J].地理学报,2013,68(11):1461-1471.
    [3]刘滨谊,张德顺,张琳,等.上海城市开敞空间小气候适应性设计基础调查研究[J].中国园林,2014(12):17-22.
    [4]刘滨谊,林俊.城市滨水带环境小气候与空间断面关系研究:以上海苏州河滨水带为例[J].风景园林,2015(6):46-54.
    [5]董芦笛,李孟柯,樊亚妮.基于“生物气候场效应”的城市户外生活空间气候适应性设计方法[J].中国园林,2014(12):23-26.
    [6]张琳,刘滨谊,林俊.城市滨水带风景园林小气候适应性设计初探[J].中国城市林业,2014,12(4):36-39.
    [7]WONG M S,NICHOL J E,TO P H,et al.A simple method for designation of urban ventilation corridors and its application to urban heat island analysis[J].Building and Environment,2010,45:1880-1889.
    [8]GORDON D L A.Implementing urban waterfront redevelopment in an historic context:a case study of the Boston Naval Shipyard[J].Ocean and Coastal Management,1999,42:909-931.
    [9]齐静静,刘京,郭亮.遥感技术应用于河流对城市气候影响研究[J].哈尔滨工业大学学报,2010,42(5):797-800,805.
    [10]纪鹏,朱春阳,李树华.夏季城市河流宽度对绿地温湿效益的影响[J].应用生态学报,2012,23(3):679-684.
    [11]NAKAYAMA T,FUJITA T.Cooling effect of water-holding pavements made of new materials on water and heat budgets in urban areas[J].Landscape and Urban Planning,2010,96:56-67.
    [12]XU J,WEI Q,HUANG X,et al.Evaluation of human thermal comfort near urban waterbody during summer[J].Building and Environment,2010,45:1072-1080.
    [13]李书严,轩春怡,李伟,等.城市中水体的微气候效应研究[J].大气科学,2008,32(3):552-560.
    [14]李留振,郑俊霞,毕丽华,等.黄河故道滩地不同植被的湿地效应分析[J].江苏农业科学,2010(4):390-392.
    [15]蒋志祥,刘京,宋晓程,等.水体对城市区域热湿气候影响的建模及动态模拟研究[J].建筑科学,2013,29(2):85-90.
    [16]李冬林,张小茜,金雅琴,等.京杭运河淮安段不同植物护坡模式消风减噪及小气候效应[J].生态与农村环境学报,2012,28(3):249-254.
    [17]王文星,陈守跃,李留振,等.黄河滩地4种不同植被的降低风速效应分析[J].四川林业科技,2010,31(5):121-123.
    [18]翟宝黔,李留振.河岸带不同植被的小气候对光照强度的影响[J].四川林业科技,2010,31(6):61-63.
    [19]CHEN L,NG E.Outdoor thermal comfort and outdoor activities:a review of research in the past decade[J].Cities,2012,29:118-125.
    [20]LIU W,ZHANG Y,DENG Q.The effects of urban microclimate on outdoor thermal sensation and neutral temperature in hot-summer and cold-winter climate[J].Energy and Buildings,2016,128:190-197.
    [21]PERINI K,MAGLIOCCO A.Effects of vegetation,urban density,building height,and atmospheric conditions on local temperatures and thermal comfort[J].Urban Forestry and Urban Greening,2014,13:495-506.
    [22]TALEGHANI M,KLEEREKOPER L,TENPIERIK M,et al.Outdoor thermal comfort within five different urban forms in the Netherlands[J].Building and Environment,2015,83:65-78.
    [23]林波荣,李莹,赵彬,等.居住区室外热环境的预测、评价与城市环境建设[J].城市环境与城市生态,2002,15(1):41-43.
    [24]李华.人体热舒适性在城市规划领域的研究综述[J].四川建筑,2014,34(5):48-50.
    [25]YANG B,OLOFSSON T,NAIR G,et al.Outdoor thermal comfort under subarctic climate of north Sweden:a pilot study in Ume[J].Sustainable Cities and Society,2017,28:387-397.
    [26]RUPP R F,VSQUEZ N G,LAMBERTS R.A review of human thermal comfort in the built environment[J].Energy and Buildings,2015,105:178-205.
    [27]LAI D,GUO D,HOU Y,et al.Studies of outdoor thermal comfort in northern China[J].Building and Environment,2014,77:110-118.
    [28]CHATZIDIMITRIOU A,YANNAS S.Microclimate development in open urban spaces:the influence of form and materials[J].Energy and Buildings,2015,108:156-174.
    [29]赵静,刘蔚巍,皇甫昊,等.夏热冬冷气候城市公共空间热环境季节特征[J].土木建筑与环境工程,2014,36(5):55-60.
    [30]ROBITU M,MUSY M,INARD C,et al.Modeling the influence of vegetation and water pond on urban microclimate[J].Solar Energy,2006,80:435-447.
    [31]PICOT X.Thermal comfort in urban spaces:impact of vegetation growth.Case study:Piazza della Scienza,Milan,Italy[J].Energy and Buildings,2004,36:329-334.
    [32]COHEN P,POTCHTER O,MATZARAKIS A.Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort[J].Building and Environment,2012,51:285-295.
    [33]MARTINELLI L,LIN T,MATZARAKIS A.Assessment of the influence of daily shadings pattern on human thermal comfort and attendance in Rome during summer period[J].Building and Environment,2015,92:30-38.
    [34]李俊鸽,杨柳,刘加平.夏热冬冷地区人体热舒适气候适应模型研究[J].暖通空调,2008,38(7):23-26.
    [35]刘滨谊,梅欹,匡纬.上海城市居住区风景园林空间小气候要素与人群行为关系测析[J].中国园林,2016,32(1):5-9.
    [36]吴志丰,陈利顶.热舒适度评价与城市热环境研究:现状、特点与展望[J].生态学杂志,2016,35(5):1364-1371.
    [37]NIKOLOPOULOU M,STEEMERS K.Thermal comfort and psychological adaptation as a guide for designing urban spaces[J].Energy and Buildings,2003,35:95-101.
    [38]NIKOLOPOULOU M,LYKOUDIS S.Thermal comfort in outdoor urban spaces:analysis across different European countries[J].Building and Environment,2006,41:1455-1470.
    [39]安玉松,于航,王恬,等.上海地区老年人夏季室外活动热舒适度的调查研究[J].建筑热能通风空调,2015,34(1):23-26.
    [40]纪鹏,朱春阳,李树华.城市河道绿带宽度对空气温湿度的影响[J].植物生态学报,2013,37(1):37-44.
    [41]纪鹏,朱春阳,王洪义,等.城市中不同宽度河流对滨河绿地四季温湿度的影响[J].湿地科学,2013,11(2):240-245.
    [42]史利江,郑丽波,张卫国,等.上海土壤有机碳储量及其空间分布特征[J].长江流域资源与环境,2010,19(12):1442-1447.
    [43]周秀佳.上海的主要自然植被类型及其分布[J].植物生态学与地植物学丛刊,1984,8(3):189-198.
    [44]曾光,田永铮,赵华,等.环境因素及综合因素对PMV指标的影响分析[J].建筑节能,2007,35(3):11-16.
    [45]GMEZ F,CUEVA A P,VALCUENDE M,et al.Research on ecological design to enhance comfort in open spaces of a city(Valencia,Spain).Utility of the physiological equivalent temperature(PET)[J].Ecological Engineering,2013,57:27-39.
    [46]NAZARIAN N,FAN J,SIN T,et al.Predicting outdoor thermal comfort in urban environments:a 3D numerical model for standard effective temperature[J].Urban Climate,2017,20:251-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700