生物质炭中盐基离子存在形态及其与改良酸性土壤的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Forms of Base Cations in Biochars and Their Roles in Acid Soil Amelioration
  • 作者:袁金华 ; 徐仁扣 ; 俄胜哲 ; 车宗贤
  • 英文作者:YUAN Jinhua;XU Renkou;E Shengzhe;CHE Zongxian;Institute of Soil, Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences;Gansu Scientific Observing and Experimental Station of Agro-Environment and Arable Land Conservation, Ministry of Agriculture;State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science,Chinese Academy of Sciences;
  • 关键词:玉米秸秆炭 ; 热解温度 ; 盐基离子形态 ; 土壤改良
  • 英文关键词:Corn straw biochar;;Pyrolysis temperature;;Forms of base cations;;Soil amelioration
  • 中文刊名:TURA
  • 英文刊名:Soils
  • 机构:甘肃省农业科学院土壤肥料与节水农业研究所;农业部甘肃耕地保育与农业环境科学观测实验站;土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所);
  • 出版日期:2019-02-15
  • 出版单位:土壤
  • 年:2019
  • 期:v.51;No.299
  • 基金:甘肃省农业科学院农业科技创新专项计划项目(2017GAAS26)、甘肃省农业科学院中青年基金项目(2015GAAS32);; 甘肃省新型肥料创制工程实验室项目(甘发改高技【2016】1099号)资助
  • 语种:中文;
  • 页:TURA201901011
  • 页数:8
  • CN:01
  • ISSN:32-1118/P
  • 分类号:77-84
摘要
为研究生物质炭中盐基离子存在形态及其与改良酸性土壤的关系,通过厌氧热解的方法于300、500和700℃下制备了玉米秸秆炭。考察了热解温度对玉米秸秆炭水溶性、交换性和盐基总量的影响。采用室内培养的方法考察了添加玉米秸秆炭对酸性土壤的改良效果。结果表明:热解温度影响玉米秸秆炭各形态盐基离子含量,玉米秸秆炭总K、总Na、总Ca、总Mg、水溶性K、水溶性Na、水溶性Ca、交换性Ca和交换性Mg含量随热解温度升高显著增加;水溶性Mg和交换性K含量随热解温度升高先增加后下降。玉米秸秆炭中的K和Na主要以水溶态存在,约40%的Ca和30%的Mg以交换态存在,约50%的Ca和70%的Mg以其他形态(主要为难溶态)存在。添加玉米秸秆炭能极显著提高酸性土壤pH和降低土壤交换性Al3+含量,提高和降低幅度随热解温度升高极显著增加。总K+总Na+总Ca+总Mg含量可以作为衡量玉米秸秆炭提高酸性土壤pH能力的间接指标。添加玉米秸秆炭能极显著提高土壤交换性K、Na和Mg含量,能显著提高交换性Ca和总盐基离子含量。玉米秸秆炭总K和总Na含量是提高土壤交换性K和Na含量的决定因素,交换性Ca含量在提高土壤交换性Mg和交换性盐基总量中起决定作用。
        Corn straw biochars were prepared under 300, 500 and 700 ℃ respectively by using oxygen-limited pyrolysis method. The effects of pyrolysis temperature on the contents of water soluble, exchangeable and total base cations in corn straw biochars were studied. The amelioration effects of corn straw biochars on an acid soil and the relationships between different forms of base cations and soil acidity amelioration were studied using an indoor incubation experiment for one-year time. The results showed that pyrolysis temperature had significant effects on the contents of different forms of base cations in corn straw biochars. The contents of total K, Na, Ca and Mg, water soluble K, Na and Ca, exchangeable Ca and Mg increased with increasing pyrolysis temperature. Water soluble Mg and exchangeable K first increased and then decreased with increasing pyrolysis temperature. The main forms of K and Na in corn straw biochars were water soluble forms, about 40% Ca and 30% Mg existing in exchangeable forms, about 50% Ca and 70% Mg existing in other forms(mainly in insoluble forms). Corn straw biochar can increase acid soil pH and decrease soil exchangeable Al3+ significantly. The extent of increasing or decreasing increased significantly with increasing pyrolysis temperature. The sum content of total K+ total Na+ total Ca+ total Mg can be an indirect indicator for corn straw biochar's capacity of raising acidic soil pH. The contents of soil exchangeable K, Na, Ca, Mg and total base cations were increased significantly by the addition of corn straw biochar. The total content of K or Na in corn straw biochar dominates the increase of soil exchangeable K or Na content. The content of exchangeable Ca in corn straw biochar dominated the increase of soil Mg and total base cations.
引文
[1]Kochian L V,Pi?eros M A,Liu J P,et al.Plant adaptation to acid soils:The molecular basis for crop aluminum resistance[J].Annual Review of Plant Biology,2015,66:571-598
    [2]Dai Z M,Zhang X J,Tang C,et al.Potential role of biochars in decreasing soil acidification-A critical review[J].Science of the Total Environment,2017,581/582:601-611
    [3]Vogt R D,Seip H M,Larssen T,et al.Potential acidifying capacity of deposition-experiences from regions with high NH4+and dry deposition in China[J].Science of the Total Environment,2006,367(1):394-404
    [4]Zhao Y,Duan L,Xing J,et al.Soil acidification in China:Is controlling SO2 emissions enough?[J].Environmental Science and Technology,2009,43(21):8021-8026
    [5]Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327(5968):1008-1010
    [6]徐仁扣.秸秆生物质炭对红壤酸度的改良作用:回顾与展望[J].农业资源与环境学报,2016,33(4):303-309
    [7]周碧青,邱龙霞,张黎明,等.基于灰色关联-结构方程模型的土壤酸化驱动因子研究[J].土壤学报,2018,55(5):1233-1242
    [8]徐仁扣.土壤酸化及其调控研究进展[J].土壤,2015,47(2):238-244
    [9]袁金华,徐仁扣.生物质炭对酸性土壤改良作用的研究进展[J].土壤,2012,44(4):541-547
    [10]Yuan J H,Xu R K.The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J].Soil Use and Management,2011,27(1):110-115
    [11]Yuan J H,Xu R K,Qian W,et al.Comparison of the ameliorating effects on an acidic Ultisol between four crop straws and their biochars[J].Journal of Soils and Sediments,2011,11(5):741-750
    [12]Yuan J H,Xu R K,Wang N,et al.Amendment of acid soils with crop residues and biochars[J].Pedosphere,2011,21(3):302-308
    [13]Yuan J H,Xu R K,Zhang H.The forms of alkalis in the biochar produced from crop residues at different temperatures[J].Bioresource Technology,2011,102(3):3488-3497
    [14]袁金华,徐仁扣.稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J].生态与农村环境学报,2010,26(5):472-476
    [15]袁金华,徐仁扣.生物质炭的性质及其对土壤环境功能影响的研究进展[J].生态环境学报,2011,20(4):779-785
    [16]索龙,潘凤娥,胡俊鹏,等.秸秆及生物质炭对砖红壤酸度及交换性能的影响[J].土壤,2015,47(6):1157-1162
    [17]李九玉,赵安珍,袁金华,等.农业废弃物制备的生物质炭对红壤酸度和油菜产量的影响[J].土壤,2015,47(2):334-339
    [18]Chan K Y,Van Zwieten L,Meszaros I,et al.Agronomic values of greenwaste biochar as a soil amendment[J].Australian Journal of Soil Research,2007,45(8):629-634
    [19]Novak J M,Lima I,Xing B S,et al.Characterization of designer biochar produced at different temperatures and their effects on a loamy sand[J].Annals of Environmental Science,2009,3:195-206
    [20]Shi R Y,Li J Y,Jiang J,et al.Incorporation of corn straw biochar inhibited the re-acidification of four acidic soils derived from different parent materials[J].Environmental Science and Pollution Research,2018,25(10):9662-9672
    [21]Bruun S,Harmer S,Bekiaris G,et al.The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure[J].Chemosphere,2017,169:377-386
    [22]Xu X Y,Zhao Y H,Sima J K,et al.Indispensable role of biochar-inherent mineral constituents in its environmental applications:A review[J].Bioresource Technology,2017,241:887-899
    [23]Shi R Y,Hong Z N,Li J Y,et al.Mechanisms for increasing the pH buffering capacity of an acidic Ultisol by crop residue-derived biochars[J].Journal of Agricultural and Food Chemistry,2017,65(37):8111-8119
    [24]Chun Y,Sheng G Y,Chiou C T,et al.Compositions and sorptive properties of crop residue-derived chars[J].Environmental Science and Technology,2004,38(17):4649-4655
    [25]Slattery W J,Ridley A M,Windsor S M.Ash alkalinity of animal and plant products[J].Australian Journal of Experimental Agriculture,1991,31(3):321-324
    [26]Gaskin J W,Steiner C,Harris K,et al.Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J].Transactions of the ASABE,2008,51(6):2061-2069
    [27]Pansu M,Gautheyrou J.Handbook of soil analysismineralogical,organic and inorganic methods[M].Heidelberg:Springer-Verlag,2006
    [28]Zhao L,Cao X D,Masek O,et al.Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J].Journal of Hazardous Materials,2013,256/257:1-9
    [29]Zhao L,Cao X D,Zheng W,et al.Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar[J].Chemosphere,2015,136:133-139
    [30]Limwikran T,Kheoruenromne I,Suddhiprakarn A,et al.Dissolution of K,Ca,and P from biochar grains in tropical soils[J].Geoderma,2018,312(15):139-150
    [31]Li M,Lou Z J,Wang Y,et al.Alkali and alkaline earth metallic(AAEM)species leaching and Cu(II)sorption by biochar[J].Chemosphere,2015,119:778-785
    [32]Cao X D,Harris W.Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J].Bioresource Technology,2010,101(14):5222-5228
    [33]Kong Z Y,Liaw S B,Gao X P,et al.Leaching characteristics of inherent inorganic nutrients in biochars from the slow and fast pyrolysis of mallee biomass[J].Fuel,2014,128(128):433-441
    [34]Van Zwieten L,Kimber S,Morris S,et al.Effects of biochar from slow pyrolysis of paper mill-waste on agronomic performance and soil fertility[J].Plant and Soil,2010,327(1/2):235-246
    [35]Fidel R B,Laird D A,Thompson M L,et al.Characterization and quantification of biochar alkalinity[J].Chemosphere,2017,167:367-373
    [36]Yuan J H,Xu R K.Effects of biochars generated from crop residues on chemical properties of acid soils from tropical and subtropical China[J].Soil Research,2012,50(7):570-578

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700