用户名: 密码: 验证码:
微生物硫氧化-硫还原回收垃圾焚烧飞灰中Cu和Zn
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recovery of Cu and Zn from waste incineration fly ash through integrated sulfur bio-oxidation and bio-reduction
  • 作者:张瑞昌 ; 邱会玲 ; 王婷 ; 冯帆 ; 李梦婷
  • 英文作者:ZHANG Ruichang;QIU Huiling;WANG Ting;FENG Fan;LI Mengting;School of Chemical Engineering & Pharmacy, Henan University of Science and Technology;
  • 关键词:垃圾焚烧飞灰 ; 生物淋滤 ; 硫酸盐还原 ; 重金属回收
  • 英文关键词:waste incineration fly ash;;bioleaching;;sulfate reduction;;heavy metals recovery
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:河南科技大学化工与制药学院;
  • 出版日期:2019-05-05 14:26
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:国家自然科学基金资助项目(41601520);; 河南科技大学大学生研究训练计划(SRTP)项目(2018140)
  • 语种:中文;
  • 页:HJJZ201905026
  • 页数:8
  • CN:05
  • ISSN:11-5591/X
  • 分类号:218-225
摘要
利用正交实验确定了飞灰中重金属生物淋滤浸出的最佳条件:pH 4.0、飞灰固体浓度1%和硫粉添加量5 g·L~(-1)。在此条件下,飞灰中Cu、Zn、Pb和Cd的去除率分别为47.3%、72.9%、12.4%和75.8%。通过氮气吹脱硫酸盐生物还原产生的H_2S,在pH为2.2和4.0时可分别以硫化物沉淀形式选择回收生物淋滤产生的淋滤液中的Cu和Zn。X射线能谱分析发现,沉淀得到的铜和锌纯度分别达90.6%和99.9%。X射线衍射分析铜沉淀的晶体类型主要为靛铜矿(CuS)、蓝辉铜矿(Cu_7S_4)和雅硫铜矿(Cu_9S_8);锌沉淀主要为纤维锌矿(ZnS)。综合分析,微生物硫氧化-硫还原可以以纯净硫化物形式回收飞灰中47.3%的Cu和64.0%的Zn。
        In this study, the optimum conditions for heavy metal bioleaching from waste incineration fly ash,being determined through the orthogonal test, were following: pH 4.0, fly ash solid concentration of 1% and sulfur concentration of 5 g·L~(-1). Under these conditions, the removal rates of Cu, Zn, Pb and Cd in fly ash were47.3%, 72.9%, 12.4% and 75.8%, respectively. For H_2 S produced from the bio-reduction of N2 stripped sulfate,it could be used to selectively recover Cu and Zn in the leachate through forming sulfide precipitation at pH 2.2 and 4.0, respectively. The X-ray energy spectrum(EDS) analysis indicated that the purity of copper or zinc in its own precipitate was 90.6% and 99.9%, respectively. XRD analysis confirmed that copper precipitate consisted of covelline(CuS), anilite(Cu_7 S_4) and yarrowite(Cu_9 S_8), and zinc precipitate primarily consisted of wurtzite(ZnS). Ultimately, 47.3% of Cu and 64.0% of Zn in the fly ash could be recovered as pure sulfides through the integrated sulfur bio-oxidation and bio-reduction.
引文
[1]周顺桂,常明,胡佩,等.污泥与猪粪作为培养基微生物去除垃圾焚烧飞灰中的重金属[J].环境科学,2005, 26(6):180-185.
    [2] GARCIA-LODEIRO I, CAECELEN-TABOADA V, FERNáNDEZ-JIMéNEZ A, et al. Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator[J]. Construction&Building Materials, 2016, 105:218-226.
    [3]林涛,谢巧玲,陈福明,等.基于重金属提取的垃圾焚烧飞灰无害化处理[J].环境工程学报, 2018, 12(9):2642-2649.
    [4] ALORRO R D, HIROYOSHI N, ITO M, et al. Recovery of heavy metals from MSW molten fly ash by CIP method[J]. Hydrometallurgy, 2009, 97(1/2):8-14.
    [5]周顺桂,周立祥,黄焕忠.生物淋滤技术在去除污泥中重金属的应用[J].生态学报, 2002, 22(1):125-133.
    [6] KIRAN M G, PAKSHIRAJAN K, DAS G. Heavy metal removal from multicomponent system by sulfate reducing bacteria:Mechanism and cell surface characterization[J]. Journal of Hazardous Materials, 2017, 324:62-70.
    [7] JONG T, PARRY D L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs[J]. Water Research, 2003, 37(14):3379-3389.
    [8] BIJMANS M F M, HELVOORT P J V, DAR S A, et al. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor[J]. Water Research, 2009, 43(3):853-861.
    [9] JANDOVáJ, LISáK, VU H, et al. Separation of copper and cobalt-nickel sulphide concentrates during processing of manganese deep ocean nodules[J]. Hydrometallurgy, 2005, 77(1/2):75-79.
    [10] SAHINKAVA E, GUNGOR M, BAYRAKDAR A, et al. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide[J]. Journal of Hazardous Materials, 2009, 171(1/2/3):901-906.
    [11] CHAN L C, GU X Y, WONG J W C. Comparison of bioleaching of heavy metals from sewage sludge using iron-and sulfur-oxidizing bacteria[J]. Advances in Environmental Research, 2003, 7(3):603-607.
    [12] FANG D, ZHANG R C, LIU X, et al. Selective recovery of soil-borne metal contaminants through integrated solubilization by biogenic sulfuric acid and precipitation by biogenic sulfide[J]. Journal of Hazardous Materials.2012, 219-220:119-126.
    [13]节剑勇,孙力平,邱春生,等.基于生物淋滤的城市污泥重金属溶出及形态迁移[J].环境工程学报, 2018, 12(3):939-946.
    [14] GU T, RASTEGAR S O, MOUSAVI S M, et al. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge[J]. Bioresource Technology, 2018, 261(8):428-440.
    [15]邱秀文,周桂香,王天烽,等.氧化硫硫杆菌JJU-1生物淋滤去除污泥中的重金属[J].环境工程学报, 2017, 11(9):5201-5206.
    [16] FANG D, ZHAO L, ZHOU L X, et al. Effects of sulfur forms on heavy metals bioleaching from contaminated sediments[J].Environmental Letters, 2009, 44(7):714-721.
    [17] FANG D, ZHAO L, YANG Z Q, et al. Effect of sulphur concentration on bioleaching of heavy metals from contaminated dredged sediments[J]. Environtal Technology, 2009, 30(12):1241-1248.
    [18] MIHELCIC J R. Fundamentals of Environmental Engineering[M]. New York:John Wiley&Sons, 1999.
    [19] AHORANTA S H, KOKKO M E, PAPIRIO S, et al. Arsenic removal from acidic solutions with biogenic ferric precipitates[J].Journal of Hazardous Materials, 2016, 306:124-132.
    [20] SAMPAIO R M, TIMMERS R A, XU Y,et al. Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor[J]. Journal of Hazardous Materials, 2009, 165(1/2/3):256-265.
    [21] VEEKEN A H, AKOTO L, HULSHOFF P L W, et al. Control of the sulfide(S2-)concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor[J]. Water Research, 2003, 37(15):3709-3717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700