热载荷下热障涂层表-界面裂纹间的相互影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interaction between surface and interface cracks in thermal barrier coatings under thermal load
  • 作者:吕凯 ; 徐颖强 ; 孙戬 ; 李征 ; 赵兴
  • 英文作者:L Kai;XU Yingqiang;SUN Jian;LI Zheng;ZHAO Xing;School of Mechanical Engineering,Northwestern Polytechnical University;
  • 关键词:热障涂层 ; 表-界面裂纹 ; 内聚力单元 ; 界面应力 ; 断裂参量
  • 英文关键词:thermal barrier coating;;surface and interface cracks;;cohesive element method;;interface stress;;fracture parameter
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:西北工业大学机电学院;
  • 出版日期:2019-01-14 17:14
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(11072196,10672134,51675427)
  • 语种:中文;
  • 页:HKDI201901014
  • 页数:10
  • CN:01
  • ISSN:11-2297/V
  • 分类号:132-141
摘要
针对高温热载荷条件下APS制热障涂层裂纹失效问题,基于涂层系统热弹、热弹塑性本构关系,考虑陶瓷层/氧化层/粘结层界面凹凸形貌,依据表、界面裂纹位置、性质不同,分别运用断裂力学和损伤力学理论建立裂纹演化模型,结合围线积分和内聚力单元法,分析了热载荷下表、界面裂纹断裂参量及开裂状态,研究了陶瓷层表面裂纹与粘结层/氧化层界面裂纹间的相互影响,揭示了热、力、化多场耦合下的裂纹失效机理。结果表明,表面裂纹大幅改变界面微区域的应力分布状态,靠近界面时能使界面裂纹扩展程度整体增加20%,且相邻凸峰处开裂非均匀性可达81%,表面裂纹断裂参量主要受多层结构热失配及缺陷主导,界面裂纹对其影响相对较小,分析结果与试验结果一致。
        In view of the problem of crack failure of thermal barrier coatings(TBCs)prepared by means of APS,based on the thermal elastic and elastoplastic constitutive relations of the coating system,and taking into consideration the concave and convex morphology of ceramic coat(TC)/oxide layer(TGO)/bond coat(BC)interface,the crack evolution model was established by fracture mechanics and damage mechanics theory respectively according to the difference of position and nature of surface and interface cracks.In combination with contour integral and cohesive element method,the fracture parameters and cracking state of the surface and interface cracks under the thermal load were analyzed,the interaction between the surface cracks of the thermal barrier coating and the interface cracks of the BC/TGO was studied,and the crack failure mechanism under the coupling of thermal,force and chemical fields was revealed.The results showed that the surface cracks greatly changed the stress distribution state in the interface microregion.When the surface crack was near the interface,the interface crack propagation increased by 20%,and the nonuniformity of the crack in the adjacent convex peak can reach 81%.The fracture parameters of the surface crack were mainly dominated by the thermal mismatch and the defects of the multilayerstructure.The effect of interface crack on the surface crack was relatively small.The results of the analysis were in agreement with the test results.
引文
[1] KUMAR V,KANDASUBRAMANIAN B.Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications[J].Particuology,2016,27(4):1-28.
    [2] PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
    [3]周益春,刘奇星,杨丽,等.热障涂层的破坏机理与寿命预测[J].固体力学学报,2010,31(5):504-531.ZHOU Yichun,LIU Qixing,YANG Li,et al.Failure mechanisms and life prediction of thermal barrier coatings[J].Chinese Journal of Solid Mechanics,2010,31(5):504-531.(in Chinese)
    [4] KUMAR V,BALASUBRAMANIAN A.Progress update on failure mechanisms of advanced thermal barrier coatings:a review[J].Progress in Organic Coatings,2016,90:54-82.
    [5] HUTCHINSON J W,HE M Y,EVANS A G.The influence of imperfections on the nucleation and propagation of buckling driven delaminations[J].Journal of the Mechanics and Physics of Solids,2000,48(4):709-734.
    [6] CHEN X,HUTCHINSON J W,EVANS A G,et al.On the propagation and coalescence of delamination cracks in compressed coatings with application to thermal barrier systems[J].Acta Materialia,2003,51(7):2017-2030.
    [7] BUMGARDNER C,CROOM B,LI X D.High-temperature delamination mechanisms of thermal barrier coatings:in-situ digital image correlation and finite element analyses[J].Acta Materialia,2017,128:54-63.
    [8] ZHU W,YANG L,ZHOU Y C,et al.Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model[J].International Journal of Plasticity,2015,64(7):76-87.
    [9] ZHANG W X,FAN X L,WANG T J.The surface cracking behavior in air plasma sprayed thermal barrier coating system incorporating interface roughness effect[J].Applied Surface Science,2011,258(2):811-817.
    [10]王铁军,范学领,孙永乐,等.重型燃气轮机高温透平叶片热障涂层系统中的应力和裂纹问题研究进展[J].固体力学学报,2016,37(6):477-517.WANG Tiejun,FAN Xueling,SUN Yongle,et al.Research progress on stress and crack in a thermal barrier coating system of high temperature turbine blade for heavy gas turbine[J].Chinese Journal of Solid Mechanics,2016,37(6):477-517.(in Chinese)
    [11] WANG L,LI D C,YANG J S,et al.Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods:a review[J].Journal of the European Ceramic Society,2016,36(6):1313-1331.
    [12] SEILER P,BAKER M,ROSLER J.Multi-scale failure mechanisms of thermal barrier coating systems[J].Computational Materials Science,2013,80(12):27-34.
    [13] LEO C V D,LUK-CYR J,LIU H W,et al.A new methodology for characterizing traction-separation relations for interfacial delamination of thermal barrier coatings[J].Acta Materialia,2014,71(1):306-318.
    [14] EVANS A G,HE M Y,HUTCHINSON J W.Mechanicsbased scaling laws for the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46(3/4):249-271.
    [15] KARLSSON A M,EVANS A G.A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems[J].Acta Materialia,2001,49(10):1793-1804.
    [16] AKTAA J,SFAR K,MUNZ D.Assessment of TBC systems failure mechanisms using a fracture mechanics approach[J].Acta Materialia,2005,53(16):4399-4413.
    [17] ZHOU C G,WANG N,XU H B.Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings[J].Materials Science and Engineering:A,2007,452/453(24):569-574.
    [18] BIAAS M.Finite element analysis of stress distribution in thermal barrier coatings[J].Surface and Coatings Technology,2008,202(24):6002-6010.
    [19]孙戬,徐颖强,李万钟,等.热生长下热障涂层残余应力及失效分析[J].中国表面工程,2016,29(1):25-31.SUN Jian,XU Yingqiang,LI Wanzhong,et al.Residual stress and failure analysis of thermal barrier coatings with thermal growth[J].China Surface Engineering,2016,29(1):25-31.(in Chinese)
    [20] LI R G,YANG G J,LI C X,et al.Strain-induced multiscale structural changes in lamellar thermal barrier coatings[J].Ceramics International,2016,43(2):2252-2266.
    [21] HEEG B,TOLPYGO V K,CLARKE D R.Damage evolution in thermal barrier coatings with thermal cycling[J].Journal of the American Ceramic Society,2011,94(1):S112-S119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700