热防护系统分区协调耦合推进方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Division Coordinating Coupled Marching Method on Thermal Protection System
  • 作者:黄杰 ; 姚卫星 ; 陈炎 ; 孔斌
  • 英文作者:HUANG Jie;YAO Wei-xing;CHEN Yan;KONG Bin;Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics and Astronautics;State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics;AVIC Chengdu Aircraft Design and Research Institute;
  • 关键词:热防护系统 ; 耦合推进方法 ; 有限体积法 ; 有限元法 ; 插值方法
  • 英文关键词:Thermal protection system;;Coupled marching method;;Finite volume method;;Finite element method;;Interpolation method
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:南京航空航天大学飞行器先进设计技术国防重点学科实验室;南京航空航天大学机械结构力学及控制国家重点实验室;中国航空工业集团公司成都飞机设计研究所;
  • 出版日期:2018-01-30
  • 出版单位:宇航学报
  • 年:2018
  • 期:v.39
  • 基金:江苏高校优势学科建设工程资助项目
  • 语种:中文;
  • 页:YHXB201801005
  • 页数:8
  • CN:01
  • ISSN:11-2053/V
  • 分类号:31-38
摘要
提出一种适用于热防护系统(TPS)热控性能研究的分区协调耦合推进方法,其中采用有限体积法(FVM)进行气动热分析,FVM空间离散采用NND格式,而结构传热采用有限元法(FEM)进行分析,且在耦合面采用基于控制面的双向映射插值方法进行数据传递。进行了圆管算例分析,2 s时刻驻点处温度计算值与试验值相对误差为4.95%。研究了空天飞行器头锥TPS的热控性能,非耦合方法获得的防热瓦和应变隔离垫(SIP)最高温度分别比耦合结果高114.4 K和32.6 K,这是由于非耦合方法未考虑壁面温度升高对气动热的反馈作用,而耦合方法充分考虑了此影响。采用高热辐射率的涂层、低导热系数和较厚的防热瓦能有效提高热防护系统的隔热性能和降低主动冷却系统的功率和重量,而防热瓦最高温度对其导热系数和厚度不敏感。
        A division coordinating coupled marching method is developed for the study of the thermal control performances on the thermal protection system(TPS) of an aerospace vehicle in this paper.The aerodynamic heating is calculated by the finite volume method(FVM),and the NND scheme is used for spatial discretization.However,the structural thermal is calculated by the finite element method(FEM).The data exchanges are conducted by the bidirectional mapping interpolation method based on the control surface on the coupled surfaces.The circular analysis example is conducted,and the relative error of the temperature at the stagnation point between the analysis and the test values is4.95 %.The thermal control performances are studied for the TPS on the nose cone of the aerospace vehicle.The maximal temperatures of the tile and the strain isolation pad(SIP) by the uncoupled method are 114.4 K and 32.6 K higher than those by the coupled method respectively.It is due to that the feedback effect of the temperature rise on the aerodynamic heating is not considered in the uncoupled method.However,the coupled method considers it.The coating with higher thermal radiation rate,the tile with lower thermal conductivity coefficient and thicker size can improve the insulation performances of TPS and reduce the power and weight of the active cooling system effectively,but the maximal temperature of the tile is not sensitive to its thermal conductivity coefficient and thickness.
引文
[1]Olynick D.Trajectory-based thermal protection system sizing for an X-33 winged vehicle concept[J].Journal of Spacecraft and Rockets,1998,35(3):249-257.
    [2]Shideler J L,Webb G L,Pittman C M.Verification tests of durable thermal protection system concepts[J].Journal of Spacecraft and Rockets,1985,22(6):598-604.
    [3]Oscar A M,Anurag S,Bhavani V S,et al.Thermal force and moment determination of an integrated thermal protection system[J].AIAA Journal,2010,48(1):119-128.
    [4]刘双,张博明.发汗式主动冷却金属热防护系统主动冷却效率研究[J].宇航学报,2011,32(2):433-438.[Liu Shuang,Zhang Bo-ming.Investigation on transpiration active cooling metallic thermal protection systems[J].Journal of Astronautics,2011,32(2):433-438.]
    [5]孟松鹤,杨强,霍施宇,等.一体化热防护技术现状和发展趋势[J].宇航学报,2013,34(10):1295-1302.[Meng Song-he,Yang Qiang,Huo Shi-yu,et al.State-of-arts and trend of integrated thermal protection system[J].Journal of Astronautics,2013,34(10):1295-1302.]
    [6]魏东,杜雁霞,石友安,等.非均匀气动加热下隔热层结构的优化设计[J].宇航学报,2015,36(10):1108-1113.[Wei Dong,Du Yan-xia,Shi You-an,et al.Optimization design of heat insulation layer with non-uniform heat flow loads[J].Journal of Astronautics,2015,36(10):1108-1113.]
    [7]朱言旦,刘伟,曾磊,等.飞行器结构部件导热/辐射耦合传热特性预测方法[J].宇航学报,2016,37(11):1371-1377.[Zhu Yan-dan,Liu Wei,Zeng Lei,et al.Method of predicting conduction-radiation coupled heat transfer characteristics for vehicle structural component[J].Journal of Astronautics,2016,37(11):1371-1377.]
    [8]Eckert E R G.Engineering relations for friction and heat transfer to surfaces in high velocity flow[J].Journal of Aerospace Sciences,1955,22(8):585-587.
    [9]Ju Y.Lower-upper scheme for chemically reacting flow with finite rate chemistry[J].AIAA Journal,1985,33(8):1418-1425.
    [10]杨肖峰,唐伟,桂业伟,等.火星环境高超声速催化加热特性[J].宇航学报,2017,38(2):205-211.[Yang Xiaofeng,Tang Wei,Gui Ye-wei,et al.Hypersonic catalytic aeroheating characteristics for Mars entry process[J].Journal of Astronautics,2017,38(2):205-211.]
    [11]沈清,顾钢民,高树椿,等.NND格式在航天飞机头部段NS方程求解中的应用[J].空气动力学学报,1989,7(2):145-155.[Shen Qing,Gu Gang-min,Gao Shu-chun,et al.Applications of the NND-scheme to the solving of Navier-Stokes equations on the fore-head of space-shuttle-like body[J].Atca Aerodynamica Sinica,1989,7(2):145-155.]
    [12]Menter F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
    [13]王保国,刘淑艳,张雅,等.双时间步长加权ENO-强紧致高分辨率格式及在叶轮机械非定常流动中的应用[J].航空动力学报,2005,20(4):534-539.[Wang Bao-guo,Liu Shuyan,Zhang Ya,et al.Pseudo-time method of weighted ENOstrongly compact high resolution schemes and its application to turbomachinery unsteady flow[J].Journal of Aerospace Power,2005,20(4):534-539.]
    [14]Yoon S,Jameson A.Low-upper Gauss-Sediel method for the Euler and Navier-Stokes equations[J].AIAA Journal,1988,26(9):1025-1026.
    [15]Wieting A R.Experimental study of shock wave interference heating on a cylindrical leading edge[R].NASA-TM-100484,1987.
    [16]Ng W H,Friedmann P P,Waas A.Thermomechanical analysis of a thermal protection system with defects and heat shorts[R].AIAA-2006-2212,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700