苯并[a]芘厌氧降解的苯酚共基质协同作用与污泥微生物特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristic of Benzo[a]pyrene Anaerobic Degradation by Phenol Cosubstrate and Microbial Communities from Two Types of Sludge
  • 作者:吴海珍 ; 胡肖怡 ; 王鸣 ; 韦景悦 ; 范一文 ; 韦朝海 ; 钟练文 ; 彭亚环
  • 英文作者:WU Hai-zhen;HU Xiao-yi;WANG Ming;WEI Jing-yue;FAN Yi-wen;WEI Chao-hai;ZHONG Lian-wen;PENG Ya-huan;School of Bioscience and Biological Engineering,South China University of Technology;School of Environment and Energy,South China University of Technology;Huaxin Environmental Technology Company;
  • 关键词:市政污泥 ; 焦化污泥 ; 苯并[a]芘(BaP) ; 苯酚 ; 共基质 ; 微生物群落 ; 多环芳烃
  • 英文关键词:municipal sludge;;coking sludge;;benzo[a]pyrene(BaP);;phenol;;co-substrate;;microbial communities;;polycyclic aromatic hydrocarbons(PAHs)
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:华南理工大学生物科学与工程学院;华南理工大学环境与能源学院;广东华欣环保科技有限公司;
  • 出版日期:2018-03-13 15:07
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(21377040,51778238);; 广东省省级科技计划项目(2015A020215008,2017A020216001);; 广东省应用型科技研发专项(2015B020235005)
  • 语种:中文;
  • 页:HJKZ201808042
  • 页数:10
  • CN:08
  • ISSN:11-1895/X
  • 分类号:334-343
摘要
苯并[a]芘(Ba P)是焦化废水中PAHs的典型代表,也是行业优先控制的污染物,其微生物响应特性以及降解的促进方法值得研究;新建焦化废水处理工程的调试运行,接种的污泥多来源于市政污泥或其他焦化厂的污泥,目前缺乏不同污泥微生物特性、有效性及其影响条件的考察.针对上述观点,选用厌氧反应器,分别采集某焦化废水处理厂以及市政污水处理厂的厌氧活性污泥,研究比较市政污泥和焦化污泥对Ba P的耐受及降解能力,以10 mg·L~(-1)的Ba P为唯一碳源及添加苯酚作为共基质,进行Ba P的微生物降解与动力学实验,用高通量测序技术分析了两种污泥在降解实验前后的微生物群落结构,阐明其变化.研究结果表明:两种污泥都能降解Ba P,苯酚共基质促进了降解效果;市政污泥的降解效率要好于焦化污泥,以Ba P为唯一碳源时,市政污泥和焦化污泥的半衰期分别为116.3 d、155.41 d,加入苯酚后,半衰期分别为38.44 d、81.25 d;群落测序分析表明,两种污泥经Ba P驯化后,群落组成都发生了较大变化,市政污泥变化远大于焦化污泥;焦化污泥经Ba P驯化后,微生物的优势菌属和驯化前差别不大,且其优势菌属都是已经报道的能够降解PAHs的菌属;市政污泥经过同样的驯化以后,微生物的优势菌属和驯化前差别较大,丰度占比最大的并不是常见的PAHs降解菌类;作为PAHs的常见降解菌属,Bacillus sp.、Pseudomonas、Achromobacter以及Sphingomonas sp.在两种污泥中均能被鉴定出来,其百分含量比较靠前.综合研究结果认为,未经过焦化废水毒性抑制的市政污泥在对Ba P的利用上更活跃,被理解为是更多种类的微生物参与到了对污染物的降解;苯酚的存在会促进Ba P等PAHs的降解,获得的启示是富集了PAHs的焦化污泥排出系统后可以通过生活污水与苯酚的共同添加实现减量化处理.
        Benzo[a]pyrene( Ba P) is a typical representative of PAHs in coking wastewater and priority-controlled pollutants in the coking industry; its response characteristics with microorganisms and the methods to promote its degradation are worth studying. On the other hand,because the inoculated sludge for the adjustment and operation of newly-constructed coking wastewater treatment plants comes from municipal sludge or other coking plants,currently,the study of the microbial properties of different sludges',sludge availability,and the conditions that influence these properties are lacking. On account of the above perspectives,an experiment to study and compare the durability of municipal sludge and coking sludge,and their ability to degrade Ba P was carried out. An anaerobic reactor was selected for the experiment and anaerobic-activated sludges were collected from a coking wastewater processing unit and a municipal wastewater plant. Then,10 mg·L~(-1) of Ba P alone and Ba P with phenol as a co-metabolic carbon source was added to the coking and municipal sludge samples,respectively,for comparison experiments to study the microbial degradation of Ba P and its dynamics. Moreover,high-throughput sequencing technology was also used to analyze the changes in the microbial community structure before and after the degradation experiment. The results showed that:(1) Both sludges were capable of degrading Ba P,but municipal sludge showed a higher degradation efficiency than coking sludge;(2) Adding phenol as co-substrate promoted the biodegradation of Ba P in both sludges. When Ba P was the sole carbon source,the half-life of Ba P in the two sludges was 155. 41 d and 116. 3 d respectively.After the addition of phenol,the half-life was reduced to 81. 25 d and 38. 44 d,respectively;(3) According to the analysis of the microbial community structure,the community composition in both sludges changed markedly. Moreover,the microbial community in the municipal sludge showed a more evident change than that of the coking sludge. In the coking sludge,the dominant bacteria community changed a little after acclimation,most of the observed bacteria were previously reported common PAH-degrading strains. In contrast,the dominant bacteria community in the municipal sludge varied greatly after acclimation,and the most abundant bacteria were not common PAH-degrading strains. In addition,some frequently reported PAHs-degrading bacteria such as Bacillus sp.,Pseudomonas,Achromobacter,and Sphingomonas sp.,were identified in both the sludges and were present in high abundance. The results indicated that municipal sludge utilized Ba P more actively than coking sludge; this phenomenon can be explained by the fact that municipal sludge contained a higher diversity of microbes that were involved in the degradation of Ba P. Furthermore,the presence of phenol promoted the degradation of PAHs like Ba P. Therefore,we proposed that the PAHs in coking sludge discharge might be reduced by the addition phenol and municipal wastewater.
引文
[1]Ma W L,Li Y F,Qi H,et al.Seasonal variations of sources of polycyclic aromatic hydrocarbons(PAHs)to a northeastern urban city,China[J].Chemosphere,2010,79(4):441-447.
    [2]Zhang W H,Wei C H,Chai X S,et al.The behaviors and fate of polycyclic aromatic hydrocarbons(PAHs)in a coking wastewater treatment plant[J].Chemosphere,2012,88(2):174-182.
    [3]Pavlovich L B,Zhuravleva N V,Bal'tser D V.Polycyclic aromatic hydrocarbons in coke-plant wastewater[J].Coke and Chemistry,2010,53(10):390-395.
    [4]张万辉,韦朝海.焦化废水的污染物特征及处理技术的分析[J].化工环保,2015,35(3):272-278.Zhang W H,Wei C H.Analysis of pollutant characteristics and treatment technologies of coking wastewater[J].Environmental Protection of Chemical Industry,2015,35(3):272-278.
    [5]Juhasz A L,Naidu R.Bioremediation of high molecular weight polycyclic aromatic hydrocarbons:a review of the microbial degradation of benzo[a]pyrene[J].International Biodeterioration&Biodegradation,2000,45(1-2):57-88.
    [6]Yap C L,Gan S,Ng H K.Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils[J].Journal of Hazardous Materials,2010,177(1-3):28-41.
    [7]王鸣,吴海珍,刘雷,等.厌氧条件下不同共基质对焦化污泥降解多环芳烃的影响[J].生态环境学报,2016,25(3):510-516.Wang M,Wu H Z,Liu L,et al.Effects of different cosubstrates on the biodegradation of polycyclic aromatic hydrocarbons by coking sewage sludge under anaerobic condition[J].Ecology and Environmental Sciences,2016,25(3):510-516.
    [8]林柱东,韦朝海,梁丽琨,等.焦化废水厌氧生物降解影响因素的识别[J].环境科学学报,2017,37(9):3316-3326.Lin Z D,Wei C H,Liang L K,et al.Anaerobic biodegradation of coking wastewater:establishing the impact factors[J].Acta Scientiae Circumstantiae,2017,37(9):3316-3326.
    [9]Wei X X,Zhang Z Y,Fan Q I,et al.The effect of treatment stages on the coking wastewater hazardous compounds and their toxicity[J].Journal of Hazardous Materials,2012,239-240:135-141.
    [10]Zhao J L,Jiang Y X,Yan B,et al.Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant[J].Environmental Toxicology and Chemistry,2014,33(9):1967-1975.
    [11]Sahariah B P,Anandkumar J,Chakraborty S.Treatment of coke oven wastewater in an anaerobic-anoxic-aerobic moving bed bioreactor system[J].Desalination and Water Treatment,2016,57(31):14396-14402.
    [12]Zhu S,Wu H Z,Wei C H,et al.Contrasting microbial community composition and function perspective in sections of a full-scale coking wastewater treatment system[J].Applied Microbiology and Biotechnology,2016,100(2):949-960.
    [13]刘国新,吴海珍,孙胜利,等.市政污泥接种焦化废水好氧降解能力及微生物群落演替的响应分析[J].环境科学,2017,38(9):3807-3815.Liu G X,Wu H Z,Sun S L,et al.Aerobic degradation and microbial community succession of coking wastewater with municipal sludge[J].Environmental Science,2017,38(9):3807-3815.
    [14]宋玉芳,区自清,孙铁珩.土壤、植物样品中多环芳烃(PAHs)分析方法研究[J].应用生态学报,1995,6(1):92-96.Song Y F,Ou Z Q,Sun T H.Analytical method of polycyclic aromatic hydrocarbons(PAHs)in soil and plant samples[J].Chinese Journal of Applied Ecology,1995,6(1):92-96.
    [15]Ye L,Zhang T.Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S r DNA 454pyrosequencing[J].Applied Microbiological Biotechnology,2013,97(6):2681-2690.
    [16]Ma Q,Qu Y Y,Shen W L,et al.Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J].Bioresource Technology,2015,179:436-443.
    [17]Musat F,Galushko A,Jacob J,et al.Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria[J].Environmental Microbiology,2009,11(1):209-219.
    [18]Lu X Y,Zhang T,Fang H H P,et al.Biodegradation of naphthalene by enriched marine denitrifying bacteria[J].International Biodeterioration&Biodegradation,2011,65(1):204-211.
    [19]Shi S N,Zhang X W,Ma F,et al.Cometabolic degradation of dibenzofuran by Comamonas sp.MQ[J].Process Biochemistry,2013,48(10):1553-1558.
    [20]Jurelevicius D,Alvarez V M,Peixoto R,Rosado,et al.Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases(PAH-RHD)encoding genes in different soils from King George Bay,Antarctic Peninsula[J].Applied Soil Ecology,2012,55:1-9.
    [21]Huang Y L,Zhang J,Zhu L Z.Evaluation of the application potential of bentonites in phenanthrene bioremediation by characterizing the biofilm community[J].Bioresource Technology,2013,134:17-23.
    [22]Liang L,Song X H,Kong J,et al.Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp.JP1[J].Biodegradation,2014,25(6):825-833.
    [23]Ma C,Wang Y Q,Zhuang L,et al.Anaerobic degradation of phenanthrene by a newly isolated humus-reducing bacterium,Pseudomonas aeruginosa strain PAH-1[J].Journal of Soils and Sediments,2011,11(6):923-929.
    [24]Tu Y T,Liu J K,Lin W C,et al.Enhanced anaerobic biodegradation of OCDD-contaminated soils by Pseudomonas mendocina NSYSU:microcosm,pilot-scale,and gene studies[J].Journal of Hazardous Materials,2014,278:433-443.
    [25]Ding J,Zhang Y B,Quan X,et al.Anaerobic biodecolorization of AO7 by a newly isolated Fe(Ⅲ)-reducing bacterium Sphingomonas strain DJ[J].Journal of Chemical Technology&Biotechnology,2015,90(1):158-165.
    [26]Bisht S,Pandey P,Kaur G,et al.Utilization of endophytic strain Bacillus sp.SBER3 for biodegradation of polyaromatic hydrocarbons(PAH)in soil model system[J].European Journal of Soil Biology,2014,60:67-76.
    [27]Amodu O S,Ojumu T V,Ntwampe K.Bioremediating silty soil contaminated by phenanthrene,pyrene,benz(a)anthracene,benzo(a)pyrene using Bacillus sp.and Pseudomonas sp.:Biosurfactant/Beta vulgaris agrowaste effects[J].African Journal of Biotechnology,2016,15(22):1058-1068.
    [28]Nopcharoenkul W,Pinphanichakarn P,Pinyakong O.The development of a liquid formulation of Pseudoxanthomonas sp.RN402 and its application in the treatment of pyrenecontaminated soil[J].Journal of Applied Microbiology,2011,111(1):36-47.
    [29]Patel V,Cheturvedula S,Madamwar D.Phenanthrene degradation by Pseudoxanthomonas sp.DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal,Gujarat,India[J].Journal of Hazardous Materials,2012,201-202:43-51.
    [30]Ghevariya C M,Bhatt J K,Dave B P.Enhanced chrysene degradation by halotolerant Achromobacter xylosoxidans using response surface methodology[J].Bioresource Technology,2011,102(20):9668-9674.
    [31]易欣怡,韦朝海,吴超飞,等.O/H/O生物工艺中焦化废水含氮化合物的识别与转化[J].环境科学学报,2014,34(9):2190-2198.Yi X Y,Wei C H,Wu C F,et al.Identification and transformation of nitrogen compounds in coking wastewater during O/H/O biological treatment process[J].Acta Scientiae Circumstantiae,2014,34(9):2190-2198.
    [32]刘显清,李国保,吴海珍,等.酚类化合物在焦化废水处理过程中的降解与转移[J].环境化学,2012,31(10):1487-1493.Liu X Q,Li G B,Wu H Z,et al.The degradation and transfer of phenolic compounds during the treatment processes of coking wastewater[J].Environmental Chemistry,2012,31(10):1487-1493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700