特大暴雨条件下小流域沟道的泥沙连通性及其影响因素——以陕西省子洲县为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Channel Sediment Connectivity and Influence Factors in Small Watersheds Under Extremely Rainstorm——A Case Study at Zizhou County,Shaanxi Province
  • 作者:张意奉 ; 焦菊英 ; 唐柄哲 ; 陈一先 ; 王楠 ; 白雷超 ; 王颢霖
  • 英文作者:Zhang Yifeng;Jiao Juying;Tang Bingzhe;Chen Yixian;Wang Nan;Bai Leichao;Wang Haolin;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Platea,Institute of Soil and Water Conservation,Northwest A&F University;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Platea,Institute of Soil and Water Conservation,Chinese Academy of Sciences,Ministry of Water Resources;
  • 关键词:暴雨 ; 沟道 ; 泥沙连通性 ; 淤地坝
  • 英文关键词:rainstorm;;channel;;sediment connectivity;;check dam
  • 中文刊名:STTB
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室;中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:水土保持通报
  • 年:2019
  • 期:v.39;No.228
  • 基金:国家自然科学基金面上项目“黄土丘陵沟壑区流域泥沙连通性对降雨与人类活动的响应机制”(41771319)
  • 语种:中文;
  • 页:STTB201901047
  • 页数:8
  • CN:01
  • ISSN:61-1094/X
  • 分类号:308-315
摘要
[目的]研究特大暴雨条件下小流域沟道泥沙输移路径、泥沙连通程度及其影响因素,旨在探讨水库溃坝的原因,为沟道防洪措施的布设提供依据。[方法]以陕西省子洲县"7·26"暴雨条件下小流域沟道泥沙连通情况为例,选取面积相近、形状相异的清水沟和蛇家沟小流域,对沟道泥沙淤积情况进行现场调查,同时将沟道分为坝地沟段和自然沟段,选取流域面积与形状系数、沟道比降,以及淤地坝的类型与分布进行对比分析两个小流域沟道泥沙连通性的差异。[结果]在此次特大暴雨条件下,清水沟和蛇家沟的淤地坝大都呈现打开状态,由上游到下游清水沟泥沙连通性呈现较强的增长趋势,蛇家沟泥沙连通性则呈现先增长后减弱的趋势。整体上清水沟的泥沙连通性比蛇家沟的强,且清水沟流域的土壤侵蚀也较为严重。串联和混联坝系以及修建有卧管、竖井和排水渠的淤地坝防洪能力更强。[结论]流域面积、流域形状和沟道比降均影响着沟道泥沙的连通性,而淤地坝类型及分布是影响沟道泥沙连通性的主导因子。
        [Objective]The sediment transport path,sediment connectivity and its influencing factors in the small watershed under the condition of extreme rainstorm of the reservoir were explored in order to explore the causes for dam failure and provide basis for the channel flood control.[Methods]Qingshuigou and Shejiagou small watersheds with similar areas and different shapes were selected to investigate the sedimentation in the channel after the rainstorm event occurred in Zizhou County,Shaanxi Province,on 26 th July,2017.The channel was divided into dam-gully section and natural gully section.The area and the shape coefficient of the watersheds,channel gradient and the type and distribution of check dams were used as factors to analyze the differences in sediment connectivity of the channels between the two small watersheds.[Results]Under the extreme rainstorm,all the check dams in Qingshuigou and Shejiagou were opened.The sediment connectivity showed a strong growth trend from the upstream to the downstream in Qingshuigou watershed,while it increased initially and then decreased in Shejiagou watershed.The sediment connectivity of the Qingshuigou watershed was stronger than that of Shejiagou watershed.Additionally,the soil erosion in Qingshuigou watershed was also more serious than that in Shejiagou watershed.Parallel dam system and hybrid dam systems,as well as check dams with horizontal tubes,shafts and drains showed better flood control capacity.[Conclusion]The area,the shape coefficient of watershed and channel gradient all affect the connectivity of channel sediment,while the type and distribution of check dams are the major factors.
引文
[1]Wang Shuai,Fu Bojie,Piao Shilong,et al.Reduced sediment transport in the Yellow River due to anthropogenic changes[J].Nature Geoscience,2015,9(1):38-41.
    [2]García-Ruiz J M,Beguería S,Lana-Renault N,et al.Ongoing and emerging questions in water erosion studies[J].Land Degradation&Development,2017,28(1):5-21.
    [3]史志华,宋长青.土壤水蚀过程研究回顾[J].水土保持学报,2016,30(5):1-10.
    [4]Bracken L J,Turnbull L,Wainwright J,et al.Sediment connectivity:A framework for understanding sediment transfer at multiple scales[J].Earth Surface Processes&Landforms,2015,40(2):177-188.
    [5]Thompson C,Fryirs K,Croke J.The disconnected sediment conveyor belt:Patterns of longitudinal and lateral erosion and deposition during a catastrophic flood in the lockyer valley,South East Queensland,Australia[J].River Research&Applications,2016,32(4):540-551.
    [6]Liu Yu,Fu Bojie.Assessing sedimentological connectivity using WATEM/SEDEM model in a hilly and gully watershed of the Loess Plateau,China[J].Ecological Indicators,2016,66:259-268.
    [7]Fryirs K A,Brierley G J,Preston N J,et al.Catchment-scale(dis)connectivity in sediment flux in the upper Hunter catchment,New South Wales,Australia[J].Geomorphology,2007,84(3):297-316.
    [8]Bracken L J,Jacky C.The concept of hydrological connectivity and its contribution to understanding runoffdominated geomorphic systems[J].Hydrological Processes,2007,21(13):1749-1763.
    [9]Poeppl R E,Keesstra S D,Maroulis J.A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems[J].Geomorphology,2016,277:237-250.
    [10]Bracken L J,Turnbull L,Wainwright J,et al.Sediment connectivity:A framework for understanding sediment transfer at multiple scales[J].Earth Surface Processes&Landforms,2015,40(2):177-188.
    [11]Brierley G,Fryirs K,Jain V.Landscape connectivity:The geographic basis of geomorphic applications[J].Area,2006,38(2):165-174.
    [12]Baartman J E M,Masselink R,Keesstra S D,et al.Linking landscape morphological complexity and sediment connectivity[J].Earth Surface Processes&Landforms,2013,38(12):1457-1471.
    [13]Heckmann T,Schwanghart W.Geomorphic coupling and sediment connectivity in an alpine catchment:Exploring sediment cascades using graph theory[J].Geomorphology,2013,182(Supplement C):89-103.
    [14]Mitasova H,Hofierka J,Zlocha M,et al.Modelling topographic potential for erosion and deposition using GIS[J].International Journal of Geographical Information Systems,1996,10(5):629-641.
    [15]Dalla F G,Lorenzo M.Slope-area relationships and sediment dynamics in two alpine streams[J].Hydrological Processes,2003,17(1):73-87.
    [16]Borselli L,Cassi P,Torri D.Prolegomena to sediment and flow connectivity in the landscape:A GIS and field numerical assessment[J].Catena,2008,75(3):268-277.
    [17]Vente J D,Poesen J,Verstraeten G,et al.Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain[J].Global&Planetary Change,2008,60(3/4):393-415.
    [18]Aurore G,Olivier C,Vincent M,et al.Application of an index of sediment connectivity in a lowland area[J].Journal of Soils&Sediments,2016,16(1):280-293.
    [19]Vigiak O,Beverly C,Roberts A,et al.Detecting changes in sediment sources in drought periods:The Latrobe River case study[J].Environmental Modelling&Software,2016,85:42-55.
    [20]Souza J O P,Correa A C B,Brierley G J.An approach to assess the impact of landscape connectivity and effective catchment area upon bedload sediment flux in Saco Creek Watershed,Semiarid Brazil[J].Catena,2016,138:13-29.
    [21]Masselink R,Keesstra S D,Temme A J A M,et al.Modelling discharge and sediment yield at catchment scale using connectivity components[J].Land Degradation&Development,2016,27(4):933-945.
    [22]刘宇.土壤侵蚀研究中的景观连通度:概念、作用及定量[J].地理研究,2016,35(1):195-202.
    [23]王盛萍,姚安坤,赵小婵.基于人工降雨模拟试验的坡面水文连通性[J].水科学进展,2014,25(4):526-533.
    [24]景可.黄土高原沟谷侵蚀研究[J].地理科学,1986,6(4):340-347.
    [25]Poesen J,Nachtergaele J,Verstraeten G,et al.Gully erosion and environmental change:importance and research needs[J].Catena,2003,50(2/3/4):91-133.
    [26]廖义善,卓慕宁,李定强,等.基于GIS黄土丘陵沟壑区分布式侵蚀产沙模型的构建:以蛇家沟小流域为例[J].泥沙研究,2012(1):7-13.
    [27]张金良,刘继祥,万占伟,等.黄河2017年第1号洪水雨洪泥沙特性分析[J].人民黄河,2017,39(12):1-3,7.
    [28]王楠,陈一先,白雷超,等.陕北子洲县“7·26”特大暴雨引发的小流域土壤侵蚀调查[J].水土保持通报,2017,37(4):338-344.
    [29]魏军.黄河2017年第1号洪水综述[J].人民黄河,2017,39(12):1-3.
    [30]宋瑶.北京山区洪沟道特征及预警技术研究[D].北京:北京林业大学,2016.
    [31]袁水龙,李占斌,李鹏,等.MIKE耦合模型模拟淤地坝对小流域暴雨洪水过程的影响[J].农业工程学报,2018,34(13):152-159.
    [32]魏霞,李占斌,沈冰,等.淤地坝建设中的水毁问题及其防御措施[J].水资源与水工程学报,2004,15(4):55-59.
    [33]李靖,张金柱,王晓.20世纪70年代淤地坝水毁灾害原因分析[J].中国水利,2003(17):55-56.
    [34]魏艳红,王志杰,何忠,等.延河流域2013年7月连续暴雨下淤地坝毁坏情况调查与评价[J].水土保持通报,2015,35(3):250-255.
    [35]秦鸿儒,孙浩,刘正杰.2013年暴雨过程中黄土高原淤地坝受损原因分析及建议[J].中国水土保持,2014(3):22-24.
    [36]韩慧霞,刘宇梁,史学建,等.沟道比降对淤地坝建设影响的定量研究[J].中国水土保持,2007(5):31-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700