Co-Fe-Pd纳米粒子的可控制备及其氧还原催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Controllable preparation of Co-Fe-Pd nanoparticles and their catalytic activities toward oxygen reduction
  • 作者:王婵娜 ; 刘令 ; 王慧华 ; 屈天鹏 ; 田俊 ; 王德永 ; 康振辉
  • 英文作者:WANG Channa;LIU Ling;WANG Huihua;QU Tianpeng;TIAN Jun;WANG Deyong;KANG Zhenhui;Shagang School of Iron and Steel, Soochow University;Institute of Functional Nano and Soft Materials FUNSOM, Soochow University;
  • 关键词:纳米粒子 ; 催化剂 ; 辐射 ; 电化学 ; 转移电子数
  • 英文关键词:nanoparticles;;catalyst;;radiation;;electrochemistry;;transferred electron-number
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:苏州大学沙钢钢铁学院;苏州大学纳米科学技术学院;
  • 出版日期:2018-11-06 09:34
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(51604179,51674172,51774208,51704200)
  • 语种:中文;
  • 页:HGSZ201901036
  • 页数:8
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:329-336
摘要
以Co(COOH)_2、FeCl_3和PdCl_2为原料,柠檬酸为稳定剂,乙醇为加速剂,采用超声辅助制备Co-Fe-Pd金属纳米粒子,并评估其氧还原反应(ORR)电催化性能。研究结果表明,Co-Fe-Pd金属纳米粒子平均粒径约3~5 nm,由于Co、Fe固溶于Pd晶格,使Co-Pd、Fe-Pd和Co-Fe-Pd纳米粒子仅显示Pd衍射峰,且伴有不同程度的宽化;相比于Co-Fe、Fe-Pd或Co-Pd纳米粒子,三元Co-Fe-Pd晶格压缩更为明显,晶格缺陷诱使的活性位点增加,氧还原催化能力增强;其氧还原起峰电位为1.03 V (vs RHE),Tafel斜率为-87 mV/dec,可与商用Pt/C催化剂相媲美;氧还原过程中电子转移数为3.80±0.04,说明其主导四电子转移路径;此外,RRDE结果显示氧还原过程中的中间产物H_2O_2含量约10%。
        Co(FeOH)_2, FeCl_3 and PdCl_2 were used as raw materials, citric acid was used as stabilizer, and ethanol was used as accelerator. Ultrasonic-assisted preparation of Co-Fe-Pd metal nanoparticles was carried out, and the oxygen reduction reaction(ORR) electrocatalytic performance was evaluated. The results show that the average sizeof Co-Fe-Pd nanoparticles prepared by ultrasonic method is about 3—5 nm, and only Pd diffraction peaks aredetected for the Co-Pd,Fe-Pd and Co-Fe-Pd nanoparticles because of the dissolution of Co and Fe into the Pdlattice. Compared to Co, Co-Fe Fe-Pd and Co-Pd nanoparticles, the lattice contraction of Co-Fe-Pd nanoparticlesexhibited as the wide peaks is remarkable, which leads to increasing lattice defects and subsequent enhancedcatalytic activities. The onset potential of oxygen reduction and the slop of Tafel for the Co-Fe-Pd nanoparticles are1.03 V(vs RHE) and-87 mV/dec, respectively. The values obtained here are comparable to those of commercial Pt/C catalyst. The transferred electron-number of Co-Fe-Pd nanoparticles is 3.80±0.04 during the oxygen reduction,which is dominated by a four-electron pathway. Furthermore, the peroxide percentage(H_2O_2) is about 10% from the results of RRDE.
引文
[1]王瀛,张丽敏,胡天军.金属空气电池阴极氧还原催化剂研究进展[J].化学学报, 2015, 73(4):316-325.Wang Y, Zhang L M, Hun T J. Progress in oxygen reduction reaction electro catalysts for metal-air batteries[J]. Acta Chimica Sinica, 2015, 73(4):316-325.
    [2]朱明骏,袁振善,桑林,等.金属/空气电池的研究进展[J].电源技术, 2012, 36(12):1953-1958.Zhu M J, Yuan Z P, Sang L, et al. Research progresses of metal/air batteries[J]. Chinese Journal of Power Sources, 2012, 36(12):1953-1958.
    [3]李彦龙,王为.金属-空气电池中空气电极的研究进展[J].电源技术, 2015,5(9):1106-1109.Li Y L, Wang W. Research progress of air electrode for metal-air battery[J]. Chinese Journal of Power Sources, 2015, 5(9):1106-1109
    [4]周宇,王宇新.杂原子掺杂碳基氧还原反应电催化剂研究进展[J].化工学报, 2017, 68(2):520-534.Zhou Y, Wang Y X. Recent progress on electrocatalysts towards oxygen reduction reaction based on heteroatoms-doped carbon[J].CIESC Journal, 2017, 68(2):520-534.
    [5] Fofana D, Natarajan S K, Hamelin J, et al. Low platinum, high limiting current density of the PEMFC(proton exchange membrane fuel cell)based on multilayer cathode catalyst approach[J]. Energy, 2014, 64:398-403.
    [6] Demarconnay L, Coutanceau C, Léger J M. Electroreduction of dioxygen(ORR)in alkaline medium on Ag/C and Pt/C nanostructured catalysts—effect of the presence of methanol[J].Electrochimica Acta, 2004, 49(25):4513-4521.
    [7]金燕仙,施梅勤,刘委明,等. Pt/WC-CNTs催化剂的制备及其对氧还原的电催化性能[J].化工学报, 2014, 65(10):4015-4024.Jin Y X, Shi M Q, Liu W M, et al. Pt/WC-CNTs electro catalyst for oxygen reduction reaction[J]. CIESC Journal, 2014, 65(10):4015-4024.
    [8] Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews, 2015, 44(8):2168-2201.
    [9] Zhu C, Li H, Fu S, et al. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three dimensional porous carbon nanostructures[J]. Chemical Society Reviews, 2016, 45(3):517-531.
    [10] Zhou M, Wang H L, Guo S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society Reviews,2016,45(5):1273-1307.
    [11]聂瑶,丁炜,魏子栋.质子交换膜燃料电池非铂电催化剂研究进展[J].化工学报, 2015, 66(9):3305-3318.Nie Y, Ding W, Wei Z D. Recent advancements of Pt-free catalysts for polymer electrolyte membrane fuel cells[J]. CIESC Journal, 2015, 66(9):3305-3318.
    [12] Sa Y J, Park C, Jeong Y, et al. Carbon nanotubes/heteroatomdoped carbo core-sheath nanostructures as highly active, metalfree oxygen reduction electrocatalysts for alkaline fuel cells[J].Angewandte Chemie International Edition, 2014, 53(16):4102-4106.
    [13] Hu C, Wang L, Zhao Y, et al. Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage[J]. Nanoscale, 2014, 6(14):8002-8009.
    [14]邹志君,郑龙珍,熊乐艳,等.一种新型的Fe-N/C氧还原反应电催化剂的制备及其性能研究[J].化工学报, 2014, 42(11):60-62.Zou Z J, Zheng L Z, Xiong L Y, et al. Preparation and performance of a new type of Fe-N/C catalyst for oxygen reduction reaction[J]. CIESC Journal, 2014, 42(11):60-62.
    [15] Fofana D, Natarajan S K, Hamelin J, et al. Low platinum, high limiting current density of the PEMFC(proton exchange membrane fuel cell)based on multilayer cathode catalyst approach[J]. Energy, 2014, 64(64):398-403.
    [16] Kim J, Momma T, Osaka T. Cell performance of Pd–Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane[J]. Journal of Power Sources, 2009, 189(2):999-1002.
    [17] Vinodgopal K, He Y, Ashokkumar M, et al. Sonochemically prepared platinum-ruthenium bimetallic nanoparticles[J]. Journal of Physical Chemistry B, 2006, 110(9):3849-52.
    [18] Nakanishi M, Takatani H, Kobayashi Y, et al. Characterization of binary gold/platinum nanoparticles prepared by sonochemistry technique[J]. Applied Surface Science, 2005, 241(1):209-212.
    [19]魏建红,官建国,袁润章.金属纳米粒子的制备与应用[J].武汉理工大学学报, 2001, 23(3):1-4.Wei J H, Guan J G, Yuan R Z. Preparation and application of metal nano particles[J]. Journal of Wuhan University of Technology, 2001, 23(3):1-4.
    [20] Kim J, Momma T, Osaka T. Synthesis of carbon-supported Pd-Sn catalyst by ultrasonic irradiation for oxygen reduction reaction[J].Journal of Power Sources, 2009, 189(2):909-914.
    [21] Wu Y, Wang C, Zou L, et al. Incorporation of cobalt into Pd2Sn intermetallic nanoparticles as durable oxygen reduction electrocatalyst[J]. Journal of Electroanalytical Chemistry, 2017,789:167-171.
    [22] Vinodgopal K, He Y, Ashokkumar M, et al. Sonochemically prepared platinum-ruthenium bimetallic nanoparticles[J]. Journal Physical Chemistry B, 2006, 110(9):3849-3853.
    [23] Oxley J D, Mdleleni M M, Suslick K S. Hydrodehalogenation with sonochemically prepared Mo2C and W2C[J]. Catalyst Today, 2004,88(3/4):139-146.
    [24] Mizukoshi Y, Tsuru Y, Tominaga A, et al. Sonochemical immobilization of noble metal nanoparticles on the surface of maghemite:mechanism and morphological control of the products[J]. Ultrasonics Sonochemistry, 2008, 15(5):875-80.
    [25] Kim J, Park J E, Momma T, et al. Synthesis of Pd-Sn nanoparticles by ultrasonic irradiation and their electrocatalytic activity for oxygen reduction[J]. Electrochimica Acta, 2009, 54(12):3412-3418.
    [26] Yu J C, Yu J, Ho W, et al. Preparation of highly photocatalytic active nano-sized TiO2particles via ultrasonic irradiation[J].Chemical Communications, 2001,(19):1942-1943.
    [27] Kim J, Momma T, Osaka T. Synthesis of carbon-supported Pd-Sn catalyst by ultrasonic irradiation for oxygen reduction reaction[J].Journal Power Sources, 2009, 189(2):909-914.
    [28] Birry L, Zagal J H, Dodelet J P. Does CO poison Fe-based catalysts for ORR[J]. Electrochemistry Communications, 2010, 12(5):628-631.
    [29] Venarusso L B, Boone C V, Bettini J, et al. Carbon-supported metal nanodendrites as efficient, stable catalysts for the oxygen reduction reaction[J]. Journal of Material Chemistry A, 2018, 6(4):1714-1726.
    [30] Lu G L, Zhu Y L, Lu L, et al. Iron-rich nanoparticle encapsulated,nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells[J]. Journal of Power Sources, 2016, 315:302-307.
    [31] Wang X P, Kariuki N, Vaughey J T. Bimetallic Pd-Cu oxygen reduction electrocatalystsfuel cells and energy conversion[J].Journal of the Electrochemistry Society, 2018, 155(6):B602-B609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700