锰化厂土壤重金属污染及微生物群落结构特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Soil Heavy Metal Pollution and Microbial Community Structure of Manganese Chemical Factory
  • 作者:蔡茜茜 ; 袁勇 ; 余震 ; 裴东辉 ; 黄雷 ; 周巍
  • 英文作者:CAI Xixi;YUAN Yong;YU Zhen;PEI Donghui;HUANG Lei;ZHOU Wei;College of Resources and Environment,Fujian Agriculture and Forestry University;Guangdong Institute of Eco-environmental Science & Technology//Guangdong Key Laboratory of Agriculture Environment Pollution Integrated Control;School of environmental science and engineering,Guangdong University of Technology;Shenzhen Techand Ecological Environment Co.,Ltd;
  • 关键词:锰污染土 ; 重金属 ; 微生物 ; 群落结构
  • 英文关键词:manganic contaminated soil;;heavy metals;;microorganism;;community structure
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:福建农林大学资源与环境学院;广东省生态环境技术研究所/广东省农业环境综合治理重点实验室;广东工业大学环境科学与工程学院;深圳市铁汉生态环境股份有限公司;
  • 出版日期:2018-06-18
  • 出版单位:生态环境学报
  • 年:2018
  • 期:v.27
  • 基金:广东省生态修复技术工程实验室(粤发改高技术[2015]162号);; 福建省自然科学基金引导性项目(2016N0007;2017N0007)
  • 语种:中文;
  • 页:TRYJ201806022
  • 页数:7
  • CN:06
  • ISSN:44-1661/X
  • 分类号:174-180
摘要
土壤一旦受到重金属污染,土壤微生物的生长代谢将受到影响,导致微生物群落结构发生变化。为探究不同深度土壤重金属与微生物群落结构之间的关系,对锰化厂同一污染点的不同深度(0.3~0.5、1.0~1.5、2.0~2.5、3.0~3.5 m)土壤进行样品采集,发现其重金属污染包括:锰(Mn)、铬(Cr)、镍(Ni)、铜(Cu)、锌(Zn)、砷(As)、镉(Cd)、汞(Hg)和铅(Pb),且在土壤3.5 m深度以上均超出了广东省土壤背景值。运用传统内梅罗污染指数法对采样区土壤断面进行污染评价,采用典型相关和典范对应分析法,对不同土层重金属含量和微生物群落丰度的相关性进行了分析。结果表明:该污染区土壤3.0 m深度以上伴有多种重金属复合污染,且1.5 m深度以上土壤属于重度污染;通过高通量测序对土壤微生物的分析,发现微生物群落组成大体一致,但不同重金属污染程度的土层所对应形成的微生物群落丰度不同,初步确定该污染区的优势菌为Sphingomonas;该区对土壤微生物影响较大的多种重金属复合污染因子主要包括Ni、Zn、Cd、Mn和Hg,且在土壤2.0~2.5m深度范围内富集了多种重金属抗性菌。该研究从多角度分析了不同土层重金属污染与微生物群落的关系,为同类污染矿区土壤环境质量评价提供科学依据,为重金属抗性菌的实验室分离提供一定的场地选择依据,可在一定程度上指导矿区重金属污染土壤的改良及修复。
        The soil is microbial stronghold. Once the soil was contaminated with heavy metals, it will affect the growth and metabolism of soil microorganisms, resulting in change of microbial community structure. To explore the relationship between heavy metals and microbial community structure at different soil depths, samples of different depths(0.3~0.5, 1.0~1.5, 2.0~2.5 and 3.0~3.5 m) were collected from the same pollution point in a manganese plant. Heavy metals such as manganese(Mn), chromium(Cr), nickel(Ni), copper(Cu), zinc(Zn), arsenic(As), cadmium(Cd), mercury(Hg) and lead(Pb) were detected, and exceeded the soil background value of Guangdong Province with depth from 0.3 to 3.5 cm. The traditional Nemerowan pollution index method was performed for pollution evaluation of soil section in the sampling area. Additionally, typical correlation and canonical correspondence analysis methods were used to analyze the correlation between heavy metals and the abundance of microbial community in different soil layers. The results showed that the soil was heavily polluted at>1.5 m depth. For the soil with depth from 3.0~3.5 m in the contaminated area, it was accompanied by a variety of heavy metals. According to the high-throughput sequencing analysis, it was found that the composition of the microbial communities in different soil layers were approximately the same. However, the abundance of the microbial communities corresponding to heavy metal-contaminated soils at different levels was different, and the dominant bacteria group could be initially identified as Sphingomona. The multiple factors of heavy metal complex pollution that had a great impact on soil microorganisms in this area mainly included Ni, Zn, Cd, Mn, and Hg. Heavy metal resistant bacteria were more likely to enrich in the soil with depth from 2.0 to 2.5 m. This study analyzes the relationship between heavy metals and microbial communities in different soil layers from multiple perspectives, provides scientific basis for the assessment of soil environmental quality in similar polluted mining areas, provides certain site selection basis for laboratory separation of heavy metal-tolerant bacteria, and to some extent helps the improvement and repairment of heavy metal contaminated soil in mining area.
引文
BAYAT B,SARI B.2010.Bioleaching of dewatered metal plating sludge by Acidithiobacillus ferrooxidans using shake flask and completely mixed batch reactor[J].African Journal of Biotechnology,9(44):7504-7512.
    BRAUD A,JEZEQUEL K,BAZOT S.2008.Enhanced phytoextraction of an agricultural Cr-,Hg-,and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria[J].Chemosphere,74(2):280-286.
    CAPORASO J G,KUCZYNSKI J,STOMBAUGH J et al.2010.QIIMEallows analysis of high-throughput community sequencing data[J].Nature Methods,7(5):335-336.
    CHEN W B.2012.The Study of Bioremediation on heavy metal of cultured seawater by Sphingomonas sp.XJ2 immobilized Sphingomonas strain[J].Advanced Materials Research,347(353):1436-1441.
    FENG S,XIE S,ZHANG X.2012.Ammonium removal pathways and microbial community in GAC-sand dual media filter in drinking water treatment[J].Journal of Environmental Science,24(9):1587-1593.
    GASPAR H,RUI F,GONZALEZ J M.2016.Influence of temperature and copper on oxalobacteraceae in soil enrichments[J].Current Microbiology,72(4):1-7.
    GUPTA S,SINGH D.2017.Role of genetically modified microorganisms in heavy metal bioremediation[M].Singapore:Springer:197-214.
    PACWA-PLOCINICZAK M,PLOCINICZAK T,YU D.2018.Effect of silene vulgarisand heavy metal pollution on soil microbial diversity in long-term contaminated soil[J].Water Air&Soil Pollution,229(1):13.
    SUN L N,ZHANG Y F,HE L Y.2010.Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland[J].Bioresour Technol,101(2):501-509.
    TAPASE S R,KODAM K M.2017.Assessment of arsenic oxidation potential of Microvirga indica S-MI1b sp.nov.in heavy metal polluted environment[J].Chemosphere,6(195):1-10.
    陈美标,郭建华,姚青,等.2012.大宝山矿区耐Cd2+细菌的分离鉴定及其生物学特性[J].微生物学通报,39(12):1720-1733.
    陈欣瑶,杨惠子,陈楸健,等.2017.重金属胁迫下不同区域土壤的生态功能稳定性与其微生物群落结构的相关性[J].环境化学,36(2):356-364.
    程东祥,张玉川,马小凡,等.2009.长春市土壤重金属化学形态与土壤微生物群落结构的关系[J].生态环境学报,18(4):1279-1285.
    邓平香.2016.Cd污染下两种生态型东南景天内生细菌多样性的比较[D].广州:华南农业大学.
    丁淑兰.2015.重金属胁迫对刺槐-根瘤菌共生体系的根系分泌物及土壤微生物多样性的影响[D].咸阳:西北农林科技大学.
    国家环境保护总局.1995.土壤环境质量标准[M].北京:中国标准出版社.
    李小林,颜森,张小平,等.2011.铅锌矿区重金属污染对微生物数量及放线菌群落结构的影响[J].农业环境科学学报,30(3):468-475.
    刘庆.2008.大宝山矿周边污染土壤重金属与微生物剖面分布的研究[D].广州:华南农业大学.
    刘云国,周海舟,冯宝莹,等.2007.锰污染稻田土壤微生物群落结构和遗传多样性研究[J].湖南文理学院学报(自科版),19(4):62-65.
    谭贵娥,何池全,陆晓怡.2008.外源微生物强化蓖麻对铅的吸收与积累研究[J].农业环境科学学报,27(1):82-85.
    田海霞.2014.抗砷菌的筛选及工业污泥中砷生物转化行为的研究[D].武汉:华中农业大学.
    王慧萍,谢学辉,柳建设.2010.抗锌细菌Sphingomonas sp.DX-T3-03分离、鉴定及性质[J].微生物学通报,37(10):1495-1500.
    王振中,胡觉莲,张友梅,等.1994.湖南省清水塘工业区重金属污染对土壤动物群落生态影响的研究[J].地理科学,14(1):64-72.
    吴晓林,王磊,桂晓琳,等.2004.优化细胞表面组分与结构以提高P.putida 5-x细胞的重金属吸附能力[J].工业微生物,34(4):23-28.
    肖文丹,叶雪珠,孙彩霞,等.2017.铬耐性菌对土壤中六价铬的还原作用[J].中国环境科学,37(3):1120-1129.
    熊云武,林晓燕,裴东辉,等.2017.锰化厂土壤重金属含量及景观植物吸收特征[J].安徽农业科学,45(11):63-66.
    杨济龙,祖艳群,洪常青,等.2003.蔬菜土壤微生物种群数量与土壤重金属含量的关系[J].生态环境学报,12(3):281-284.
    杨金水,杨扬,孙良明,等.2017.铅锌矿区土壤真菌响应重金属污染的群落组成变化[J].北京大学学报(自然科学版),53(2):387-396.
    张金莲,丁疆峰,卢桂宁,等.2015.广东清远电子垃圾拆解区农田土壤重金属污染评价[J].环境科学,36(7):2633-2640.
    中华人民共和国农业部.2007.土壤p H的测定[M].北京:中国农业出版社.
    中华人民共和国环境保护部.2016.土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法[M].北京:中国环境科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700