聚乙烯醇材料超疏水改性现状及发展趋势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Current Situation and Developing Trend of Superhydrophobic Modification of Polyvinyl Alcohol
  • 作者:王筱宁 ; 杨雨凡 ; 徐佳盛 ; 蔡静蕊
  • 英文作者:WANG Xiao-ning;YANG Yu-fan;XU Jia-sheng;CAI Jing-rui;Beijing Forestry University;
  • 关键词:聚乙烯醇 ; 超疏水 ; 改性 ; 现状 ; 趋势
  • 英文关键词:PVA;;superhydrophobic;;modification;;current situation;;trend
  • 中文刊名:LVBZ
  • 英文刊名:Green Packaging
  • 机构:北京林业大学;
  • 出版日期:2019-05-15
  • 出版单位:绿色包装
  • 年:2019
  • 期:No.41
  • 基金:大学生创新创业训练计划(201710022028)
  • 语种:中文;
  • 页:LVBZ201905062
  • 页数:8
  • CN:05
  • ISSN:10-1400/TB
  • 分类号:53-60
摘要
聚乙烯醇是一种在一定条件下可溶于水的有机化合物。正是由于其亲水性,PVA作为环境友好型材料,在各个领域有着重要的应用。但与此同时,亲水性也限制了聚乙烯醇薄膜材料的应用领域及应用范围,因此近年来,关于聚乙烯醇薄膜材料进行超疏水改性的研究层出不穷。而对聚乙烯醇薄膜超疏水改性的方法主要涉及模板法、化学气相沉积法、溶胶-凝胶法、静电纺丝法、表面修饰法等。文章对所涉及方法及其应用分别进行了整理和分析,并对研究趋势进行探索。
        Polyvinyl alcohol(PVA) is a water-soluble organic compound under certain conditions. Because of its hydrophilicity, PVA, as an environmentally friendly material, had important applications in various fields. But at the same time, hydrophilicity also limits the application field and scope of polyvinyl alcohol film materials. Therefore, in recent years, there were a large amount of researches on superhydrophobic modification of PVA film materials. The methods for superhydrophobic modification of PVA films included template method, chemical vapor deposition, sol-gel method, electrospinning, surface modification and so on. These methods and applications were sorted out and analyzed, and the research trend was explored.
引文
[1]魏书静,黄赟,查刘生.改善聚乙烯醇薄膜耐水性的研究进展[J].化工进展,2017(7):2540-2546.
    [2]张莉琼.改性PVA涂布膜的现状与发展[J].绿色包装2017(3):37-40.
    [3]Zhang X,Tang K,Zheng X.Electrospinning and Crosslinking of COL/PVA Nanofiber-microsphere Containing Salicylic Acid for Drug Delivery[J].Journal o Bionic Engineering,2016,13(1):143-149.
    [4]刘鹏,李东立,许文才,付亚波.PVA可生物降解材料研究进展[J].北京印刷学院学报,2014,22(2):23-26.
    [5]张惠珍,刘白玲,罗荣.PVA及其复合材料生物降解研究进展[J].中国科学院研究生院学报,2005,22(6):657-666.
    [6]王婧,苑会林,马沛岚,李军.聚乙烯醇薄膜的生产及应用现状与展望[J].塑料,2005(2):12-17.
    [7]郑黎俊,乌学东,楼增,吴旦.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1691-1699.
    [8]柯清平,李广录,郝天歌,何涛,李雪梅.超疏水模型及其机理[J].化学进展,2010(2):284-290.
    [9]赵宁,卢晓英,张晓艳,刘海云,谭帅霞,徐坚.超疏水表面的研究进展[J].化学进展,2007,19(6):860-871.
    [10]Khorsand S,Raeissi K,Ashrafizadeh F,et al.Superhydrophobic nickel-cobalt alloy coating with micro-nano flower-like structure[J].Chemical Engineering Journal,2015273:638-646.
    [11]Lafuma,Aurélie,Quéré,David.Superhydrophobic states[J].Nature Materials,2003,2(7):457-460.
    [12]Schellenberger F,Encinas,Noemí,Vollmer D,et al.How Water Advances on Superhydrophobic Surfaces[J]Physical Review Letters,2016,116(9):096101.
    [13]Wang,S.,Liu,K.,Yao,X.,&Jiang,L.(2015)Bioinspired Surfaces with Superwettability:New Insight on Theory,Design,and Applications.Chemical Reviews115(16),8230-8293.
    [14]杜海燕,宋震,郝晓刚,梁镇海,王永洪,申迎华.氟化聚乙烯醇/SiO2超疏水薄膜的制备及性能[J].高分子材料科学与工程,2016,32(10):138-142.
    [15]Shibuichi S,Yamamoto T,Onda T,et al.Super Water-and Oil-Repellent Surfaces Resulting from Fracta Structure[J].Journal of the Research Association of Powder Technology Japan,1998,208(1):287-294.
    [16]李举豹.乳液法仿生超疏水SiO2薄膜的制备及性能研究[D].山东轻工业学院,2011.
    [17]江雷.从自然到仿生的超疏水纳米界面材料[J].科技导报,2005(2):4-8.
    [18]郭志光,刘维民.仿生超疏水性表面的研究进展[J]化学进展,2006,18(6):721-726.
    [19]梁伟欣,张亚斌,王奔,郭志光,刘维民.仿生超疏水性表面的生物应用[J].化学学报,2012,70(23):2393-2403.
    [20]吉海燕,范亚敏,吴殿国,费婷,黄济华,许晖,李华明.仿生超疏水聚丙烯/二氧化钛复合薄膜的构筑及性能研究[J].材料导报,2017,31(24):101-104.
    [21]杨晓华,肖建华,欧军飞.仿美人蕉微纳结构制备超疏水材料[J].中国塑料,2013,27(8):77-80.
    [22]房岩,王誉茜,孙刚,关琳.樱桃叶片表面的特殊复合浸润性及仿生制备[J].东北师大学报(自然科学版)2016(4):121-124.
    [23]张诗妍,高常锐,狄桓宇,冯琳.霸王鞭和麒麟掌叶片的表面微结构及超疏水性[J].高等学校化学学报2012,33(3):564-568.
    [24]Xu M,Lu N,Qi D,et al.Fabrication of superhydrophobic polymer films with hierarchical silver microbowl array structures[J].Journal of Colloid and Interface Science,2011,360(1):300-304.
    [25]卢永华.超疏水涤纶织物的高温高压表面镶嵌法制备研究[D].西南大学,2016.
    [26]朱朋辉,陈港,文执成.超疏水纸张的制备及其应用的研究进展[J].造纸科学与技术,2017(1):40-45.
    [27]Chen J,Tang W,Tian B,et al.Chemical Vapor Deposition of High-Quality Large-Sized MoS\r,2\r,Crystals on Silicon Dioxide Substrates[J].Advanced Science,2016,3(8).
    [28]Huang J,Lyu S,Fu F,Wu Y,Wang S.Green preparation of a cellulose nanocrystals/polyvinyl alcoho composite superhydrophobic coating[J].RSC Adv.20177(33):20152-20159.
    [29]Zhai T,Zheng Q,Cai Z,Xia H,Gong S.Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aeroge microspheres and their use as oil/solvent superabsorbents.[J]Carbohydr Polym,2016,148:300-308.
    [30]IgnasiVilaró,Jose L.Yagüe,Borros SSuperhydrophobic copper surfaces with anti-corrosion properties fabricated by solventless CVD methods[J].Acs Applied Materials&Interfaces,2016,9(1):1057.
    [31]杨敬葵,张凯舟,邵会菊.超疏水聚丙烯材料制备工艺的研究进展[J].塑料,2014,43(6):24-26.
    [32]胡小娟,刘岚,罗远芳,贾德民,程梁,胡盛哲.溶胶-凝胶法制备超疏水PMHS-SiO2涂膜[J].材料研究学报2010,24(3):266-272.
    [33]谢宇,曹黎华.纳米粒子改性环氧树脂的研究进展[J]应用化工,2008,37(3):334-337.
    [34]侯成成,管自生.有机硅烷构建超疏水表面的研究进展[J].化工新型材料,2012,40(12):19-21.
    [35]赵立强,南泉,全贞兰,吴杰,金花子.溶胶-凝胶法制备超疏水表面的研究进展[J].低温与特气,2015(5):1-5.
    [36]Kim H.M.,Noh Y.J.,Yu J.,Kim S.Y.,Youn J.RSilica aerogel/polyvinyl alcohol(PVA)insulation composites with preserved aerogel pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution[J]Composites Part A:Applied Science and Manufacturing,201575:39-45.
    [37]万勇,张泉,李杨.溶胶-凝胶法制备超疏水性薄膜摩擦学性能的研究[J].无机材料学报,2015,30(3):299-304.
    [38]Mahadik S A,Kavale M S,Mukherjee S K,et al Transparent Superhydrophobic silica coatings on glass by solgel method[J].Applied Surface Science,2010,257(2):333-339.
    [39]Lakshmi R V,Bera P,Anandan C,et al.Effect of the size of silica nanoparticles on wettability and surface chemistry of sol-gel superhydrophobic and oleophobic nanocomposite coatings[J].Applied Surface Science,2014,320:780-786.
    [40]李芳,李其明.静电纺丝法制备超疏水微纳米纤维的研究进展[J].辽宁石油化工大学学报,2018,38(04):1-9.
    [41]李静,易玲敏,王明乾,周鸿.静电纺丝法制备超疏水氟硅改性纳米SiO2/PET共混膜[J].高分子材料科学与工程,2016(12):115-120.
    [42]潘赛.金属表面喷涂PMMA/SiO2超疏水涂层及其性能研究[D].南京理工大学,2017.
    [43]藏琳琳,常金辉,马军.静电纺丝制备超疏水二氧化硅球纤维[C].中国第四届静电纺丝大会(CICE 2016).0.
    [44]滕乐天,赵康,金龙,汤玉斐.静电纺丝法制备ZnO纳米纤维膜及其超疏水性能[J].中国陶瓷,2014(11):12-15.
    [45]常金辉.二氧化硅微球复合纤维的制备研究[D].黑龙江大学,2015.
    [46]周思斯,管自生,李强,陆春华,许仲梓.Zn片经水热反应和氟硅烷修饰构建超疏水ZnO表面[J].物理化学学报,2009,25(8):1593-1598.
    [47]杜晨光,夏帆,王树涛,王京霞,宋延林,江雷.仿生智能浸润性表面研究的新进展[J].高等学校化学学报2010,31(3):421-431.
    [48]Erbil H Y,Demirel A L,Avc Y,et al.Transformation of a Simple Plastic into a Superhydrophobic Surface.Science2003,299(5611),1377-1380.
    [49]高园,张永明,李虹,袁望章.非对称表面氟化聚乙烯醇膜的制备及性能研究[J].膜科学与技术,2012,32(6):16-21.
    [50]Wang Q,Dong Z,Yan X,Chang Y,Ren LZhou J.Biomimetic Hydrophobic Surfaces with Low or High Adhesion Based on Poly(vinyl alcohol)and SiO2Nanoparticles[J].Journal of Bionics Engineering,2017,14(3).
    [51]Gurav A B,Guo Q,Tao Y,Tao M,Wang Y,Wang D.Durable,robust and free-standing superhydrophobic poly(vinyl alcohol-co-ethylene)nanofiber membrane[J]Materials Letters,2016:S0167577X16310436.
    [52]郭孟.柔韧超疏水耐高温无机纳米纤维薄膜[D].东华大学,2010.
    [53]Zhi J H,Zhang L Z,Yan Y,Zhu J.Mechanica durability of superhydrophobic surfaces:The role of surface modification technologies[J].Applied Surface Science,2017392:286-296.
    [54]吕婷,王媛怡,陈庆民.全氟癸基硅烷(PTES)修饰微纳结构超疏水表面耐久性研究[J].南京大学学报(自然科学),2017(01):190-196.
    [55]卞梦军.超疏水TiO2薄膜的制备及其结构和性能研究[D].哈尔滨工业大学,2017.
    [56]王成毓,刘峰.一种提高超疏水木材机械稳定性的方法[J].中国工程科学,2014(4):79-82.
    [57]侯豪情,王琦,孔岐忠,程楚云,周小平.高透气超疏水聚乙烯醇纳米纤维非织造布、其制备方法及应用.
    [58]袁志庆,王梦蕾,黄娟.一种制备超疏水聚乙烯醇薄膜的新技术.
    [59]王文弘.超疏水材料的制备[D].华东理工大学.
    [60]卜昕阳.超疏水材料的制备及应用[D].东南大学2016.
    [61]郝喜海,彭笑.聚乙烯醇水溶性包装薄膜生物降解性研究[J].包装工程,2016(5):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700