Q345钢预热时间对熔结环氧粉末涂层防护性能的影响Ⅰ:界面结合性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel Ⅰ: Analysis of Interface Bonding
  • 作者:曹海娇 ; 魏英华 ; 赵洪涛 ; 吕晨曦 ; 毛耀宗 ; 李京
  • 英文作者:CAO Haijiao;WEI Yinghua;ZHAO Hongtao;LV Chenxi;MAO Yaozong;LI Jing;Institute of Metal Research, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:熔结环氧粉末涂层 ; 预热时间 ; 结合性能 ; 基体表面状态
  • 英文关键词:fusion bonded epoxy powder coating;;preheating time;;bonding performance;;surface state of substrate
  • 中文刊名:ZGFF
  • 英文刊名:Journal of Chinese Society for Corrosion and Protection
  • 机构:中国科学院金属研究所;中国科学院大学;
  • 出版日期:2018-04-15
  • 出版单位:中国腐蚀与防护学报
  • 年:2018
  • 期:v.38
  • 基金:中国科学院A类战略性先导科技专项(XDA13040500)~~
  • 语种:中文;
  • 页:ZGFF201802005
  • 页数:9
  • CN:02
  • ISSN:21-1474/TG
  • 分类号:40-48
摘要
通过拉伸实验和湿附着力评级实验,研究了210℃下基体的预热时间对熔结环氧粉末涂层/Q345钢界面结合性能的影响。结果表明,预热时间对涂层体系结合性能影响显著,Q345基体在210℃下预热6 h其结合性能达到最佳。采用CLSM、AFM和XPS等表面测试技术分别对基体表面形貌、粗糙度和化学成分进行表征,并探讨基体表面状态与涂层体系结合性能的相关性。结果表明,预热处理使得Q345基体表面生成致密氧化膜,氧化膜成分由外到内依次为Fe_2O_3层和Fe_3O_4层。随着预热时间延长,表层Fe_2O_3厚度基本不变,内层Fe_3O_4逐渐增厚,基体表面粗糙度改变;基体表面粗糙度的改变影响涂层体系结合性能。
        The effect of substrate preheating time on the interface bonding of fusion bonded epoxy powder coating/Q345 substrate was investigated by means of tensile test and wet adhesion test. Results showed that the preheating time presents significant effect on the interface bonding of coating/Q345 substrate, and among others, the best bonding performance could be acquired for the substrate being preheated for 6 h at 210 ℃. The surface morphology, roughness and chemical composition of the substrate were characterized by CLSM, AFM, XPS, and the correlation between the surface state of the substrate and the bonding performance of coating/substrate was inquired into. Results revealed that the preheating treatment resulted in the formation of a dense oxide scale on the surface of Q345 substrate, which composed of an outer layer Fe_2O_3 and an inner layer Fe_3O_4. With the prolonging preheating time, the thickness of Fe_2O_3 layer was almost the same and the inner layer Fe_3O_4 became thicker, whilst the surface roughness of the substrate changed gradually. The change of the surface roughness of the substrate affected the bonding performance of the coating/substrate system.
引文
[1]Kehr J A,Enos D G.FBE,a foundation for pipeline corrosion coatings[R].Houston:NACE International,2000
    [2]Nan R Z.Powder Coating and Coating Technology[M].3rd Ed.Beijing:Chemical Industry Press,2014:441(南仁植.粉末涂料与涂装技术[M].第3版.北京:化学工业出版社,2014:441)
    [3]Palimi M J,Peymannia M,Ramezanzadeh B.An evaluation of the anticorrosion properties of the spinel nanopigment-filled epoxy composite coatings applied on the steel surface[J].Prog.Org.Coat.,2015,80:164
    [4]Liu D,Wu F,Zhao W J,et al.Advance in anticorrosion performance of epoxy resin[J].Mater.China,2015,34:852(刘丹,伍方,赵文杰等.环氧树脂防腐性能研究进展[J].中国材料进展,2015,34:852)
    [5]Elsner C I,Cavalcanti E,Ferraz O,et al.Evaluation of the surface treatment effect on the anticorrosive performance of paint systems on steel[J].Prog.Org.Coat.,2003,48:50
    [6]Wang Z P,Xie Z,Li L,et al.The influence of steel surface treatment process on epoxy resin coating adhesion[J].Total Corros.Control,2013,27(11):60(王志鹏,谢众,李龙等.钢材表面处理工艺对环氧涂层附着力的影响[J].全面腐蚀控制,2013,27(11):60)
    [7]Jamali S S,Mills D J.Steel surface preparation prior to painting and its impact on protective performance of organic coating[J].Prog.Org.Coat.,2014,77:2091
    [8]Cho K,Cho E C.Effect of the microstructure of copper oxide on the adhesion behavior of epoxy/copper leadframe joints[J].J.Adhes.Sci.Technol.,2000,14:1333
    [9]Li W C,Zhang M M,Qiao J F,et al.Preparation and properties of phosphating and silane films on cold rolled steel[J].Corros.Prot.,2015,36:334(李文超,张明明,乔静飞等.冷轧钢表面磷化膜和硅烷膜的制备与性能[J].腐蚀与防护,2015,36:334)
    [10]Vakili H,Ramezanzadeh B,Amini R.The corrosion performance and adhesion properties of the epoxy coating applied on the steel substrates treated by cerium-based conversion coatings[J].Corros.Sci.,2015,94:466
    [11]Liu B,Fang Z G,Wang H B,et al.Effect of cross linking degree and adhesion force on the anti-corrosion performance of epoxy coatings under simulated deep sea environment[J].Prog.Org.Coat.,2013,76:1814
    [12]S?rensen P A,Kiil S,Dam-Johansen K,et al.Anticorrosive coatings:a review[J].J.Coat.Technol.Res.,2009,6:135
    [13]NIST XPS database.http://srdata.nist.gov/xps/
    [14]Mi W B,Jiang E Y,Bai H L.Fe3+/Fe2+ratio controlled magnetic and electrical transport properties of polycrystalline Fe3(1-δ)O4films[J].J.Phys.:Appl.Phys.,2009,42D:105007
    [15]Fujii T,De Groot F M F,Sawatzky G A,et al.In situ XPS analysis of various iron oxide films grown by NO2-assisted molecularbeam epitaxy[J].Phys.Rev.,1999,59B:3195
    [16]Aronniemi M,Sainio J,Lahtinen J.Chemical state quantification of iron and chromium oxides using XPS:The effect of the background subtraction method[J].Surf.Sci.,2005,578:108
    [17]Wielant J,Goossens V,Hausbrand R,et al.Electronic properties of thermally formed thin iron oxide films[J].Electrochim.Acta,2007,52:7617
    [18]Li M S.High Temperature Corrosion of Metals[M].Bejing:Metallurgical Industry Press,2001:111(李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001:111)
    [19]Bertrand N,Desgranges C,Poquillon D,et al.Iron oxidation at low temperature(260~500℃)in air and the effect of water vapor[J].Oxid.Met.,2010,73(1/2):139
    [20]Bahlakeh G,Ghaffari M,Saeb M R,et al.A close-up of the effect of iron oxide type on the interfacial interaction between epoxy and carbon steel:Combined molecular dynamics simulations and quantum mechanics[J].Phys.Chem.,2016,120C:11014

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700