镁/聚己内酯的熔融挤出增材制造工艺研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fused Extrusion Material Additive Manufacturing for Mg/PCL Composites
  • 作者:刘永财 ; 刘亚雄 ; 伍言龙 ; 陈若梦
  • 英文作者:LIU Yongcai;LIU Yaxiong;WU Yanlong;CHEN Ruomeng;School of Mechanical Engineering,Xi'an Jiaotong University;
  • 关键词:骨修复 ; 熔融挤出 ; 聚己内酯 ; ; 力学性能
  • 英文关键词:bone tissue repaire;;fused extrusion;;polycaprolactone;;magnesium;;mechanical properties
  • 中文刊名:XAJT
  • 英文刊名:Journal of Xi'an Jiaotong University
  • 机构:西安交通大学机械工程学院;
  • 出版日期:2018-11-08 09:34
  • 出版单位:西安交通大学学报
  • 年:2019
  • 期:v.53
  • 基金:国家重点研发计划资助项目(2017YFB1104100,2018YFB110061);; 国家自然科学基金资助项目(51675416)
  • 语种:中文;
  • 页:XAJT201902010
  • 页数:10
  • CN:02
  • ISSN:61-1069/T
  • 分类号:76-85
摘要
为了解决聚己内酯(PCL)在骨修复领域应用中力学性能差、降解时间长、表面疏水、不具有骨诱导性等缺点,采用在PCL基底内引入镁(Mg)粉末颗粒的方法,制备了Mg/PCL复合材料,并通过熔融挤出增材制造技术制造了骨修复植入物。制备了可用于熔融挤出打印的Mg/PCL复合丝材,并研究了不同温度对挤出丝材质量和均匀度的影响,改变不同的打印参数,打印了拉伸、弯曲样件,研究了打印温度、打印层厚和镁含量对PCL机械性能的影响。利用熔融挤出增材制造工艺,制造了孔径为300~500μm、杆径为600μm的骨组织工程支架和狗的下颌骨假体,并在电镜下观察了支架表面形貌,加入镁颗粒,使纯PCL的拉伸模量增加了45.6%,抗弯模量增加了89.4%,同时弯曲强度增加了27.3%。PCL基底内Mg含量越高,电镜微观形貌越粗糙。结果表明:加入Mg颗粒,可以改善PCL的力学性能,弹性模量达到了人体松质骨的范围;电镜下镶嵌在PCL表面的镁颗粒改善了PCL表面粗糙度和亲水性,有利于细胞附着和增殖。
        The poor mechanical properties,long degradation time,hydrophobic surface and worse osteoinductive behavior of polycaprolactone(PCL)limit its application to bone tissue repairing.We incorporate Mg micro-particles into the PCL matrix to produce Mg/PCL composite material and fabricate bone repairing substitute by fused extrusion additive manufacture technology.The influences of temperature on quality and evenness of extruded Mg/PCL composite filament are analyzed.The tensile and bending samples are made to verify the influences of printing perimeters on the mechanical properties of Mg/PCL.We fabricate the bone tissue engineering scaffolds with the pore size of 300-500μm and strut size of 600μm and observe the scaffold surface morphology by scanning electron microscope(SEM),then customize dog mandible prosthesis.Compared with pure PCL,the tensile and flexible modulus are heightened by 45.6% and 89.6%respectively,while the bending strength is heightened by 27.3%.The more the Mg particle content in PCL matrix,the rougher the surface morphology in SEM.The results show that incorporating Mg particles improves the mechanical properties of PCL,which approach those of human cancellous bone.Mg micro-particles inserted on the PCL matrix promote the surfaceroughness and hydrophilicity to facilitate cell attachment and growth.
引文
[1] BROWN C.Osteoporosis:staying strong[J].Nature,2017,550:S15-S17.
    [2] IQBAL M M.Osteoporosis:epidemiology,diagnosis,and treatment[J].South Med J,2000,93(1):2-18.
    [3] KAIUWE L,JOSEPH D G.Bioresorbable bone graft substitutes of different osteoconductivities:a histologic evaluation of osteointegration of poly(propylene glycolcofumaric acid)-based cement implants in rats[J].Biomaterials,2000,21:757-764.
    [4] GEIGER M.Collagen sponges for bone regene-ration with rhBMP-2[J].Advanced Drug Delivery Reviews,2003,55:1613-1629.
    [5] NAVARRO M,DEL VALLE S,MARTINEZ S,et al.New macroporous calcium phosphate glass ceramic for guided bone regeneration[J].Biomaterials,2004,25(18):4233-4241.
    [6] DOADRIO J C,ARCOS D,CABAAS M V,et al.Calcium sulphate-based cements containing cephalexin[J].Biomaterials,2004,25(13):2629-2635.
    [7] NAIR L S,LAURENCIN C T.Biodegradable polymers as biomaterials[J].Progress in Polymer Science,2007,32(8):762-798.
    [8] WOODRUFF M A,HUTMACHER D W.The return of a forgotten polymer:polycaprolactonein the 21st century[J].Progress in Polymer Science,2010,35(10):1217-1256.
    [9] WONG H M,CHU P K,LEUNG F K L,et al.Engineered polycaprolactone:magnesium hybrid biodegradable porous scaffold for bone tissue engineering[J].Progress in Natural Science:Materials International,2014,24(5):561-567.
    [10]WITTE F.The history of biodegradable magnesium implants:a review[J].Acta Biomater,2010,6(5):1680-1692.
    [11]ANDREA H.Role of magnesium in genomic stability[J].Mutation Research,2001,475(1/2):113-121.
    [12]JURGEN V. Magnesium nutrition and metabolism[J].Molecular Aspects of Medicine,2003,24(1):27-37.
    [13]SONG G.Control of biodegradation of biocom-patable magnesium alloys[J].Corrosion Science,2007,49(4):1696-1701.
    [14]TSAI K Y,LIN H Y,CHEN Y W,et al.Laser sintered magnesium-calcium silicate/poly-ε-caprolactone scaffold for bone tissue engineering[J].Materials,2017,10(1):65.
    [15]ROH H S,LEE C M,HWANG Y H,et al.Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration[J].Mater Sci Eng:C Mater Biol Appl,2017,74:525-535.
    [16]WONG H M,WU S,CHU P K,et al.Lowmodulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation[J].Biomaterials,2013,34(29):7016-7032.
    [17]KIM J W,SHIN K H,KOH Y H.Production of poly(ε-caprolactone)/hydroxyapatite composite scaffolds with a tailored macro/microporous structure,high mechanical properties,and excellent bioactivity[J].Materials,2017,10(10):1123.
    [18]KOSORN W,SAKULSUMBAT M,UPPANAN P,et al.PCL/PHBV blended three dimensional scaffolds fabricated by fused deposition modeling and responses of chondrocytes to the scaffolds[J].J Biomed Mater Res:B Appl Biomater,2017,105(5):1141-1150.
    [19]DAVILA J L,DE FREITAS M S,NETO P I,et al.Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing[EB/OL].[2018-04-15].https:∥www.researchgate.net/publication/283974172_Fabrication_of_PC.
    [20]沈师,陈明学.3D打印制备聚己内酯/I型胶原组织工程半月板支架及其理化特性的研究[J].中国修复重建外科杂志,2018,32(9):1205-1210.SHEN Shi,CHEN Mingxue.Study on the preparation of polyca prolactone/typeⅠcollagen tissue engineered meniscus scaffold by three-dimensional printing and its physiochemical properties[J]. Chinese Journal of Reparative and Reconstructive Surgery,2018,32(9):1205-1210.
    [21]刘文杰.ATBC对3D打印用PLA/PCL线材的制备与性能的影响研究[J].功能材料,2017,48(11):11168-11173.LIU Wenjie.Influence of addition of ATBC onthe preparation and properties of PLA/PCL filaments of FDM 3Dprinting[J].Journal of Functional Materials,2017,48(11):11168-11173.
    [22]SINGH R,SINGH S,FRATERNALI F.Development of in-house composite wire based feed stock filaments of fused deposition modelling for wear-resistant materials and structures[J].Composites:Part BEngineering,2016,98:244-249.
    [23]HAQ R H A,BIN WAHAB M S.Fabrication process of polymer nano-composite filament for fused deposition modeling[J].Applied Mechanics and Materials,2013,465/466:8-12.
    [24]刘德宝,孙丽丽,唐怀超,等.镁/聚乳酸复合材料的制备与表征[J].高分子材料科学与工程,2012,28(2):137-139.LIU Debao,SUN Lili,TANG Huaichao,et al.Preparation and characterization of Mg/PLA composite[J].Polymer Materials Science and Engineering,2012,28(2):137-139.
    [25]苗建飞.3D打印PLA/PCL复合材料的力学性能[J].工程塑料应用,2018,46(2):12-15.MIAO Jianfei.Mechanical properties of 3D printing PLA/PCL composites[J].Engineering Plastics Application,2018,46(2):12-15.
    [26]ENGELBERG I,KOHN J.Physico-mechanical properties of degradable polymers used in medical applications:a com parative study[J].Biomaterials,1991,12(3):292-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700