多维熔融物与冷却剂相互作用分析程序COSMETRIC的开发与验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development and Validation of Multidimensional Fuel and Coolant Interaction Analysis Code COSMETRIC
  • 作者:郭宇翔 ; 钟明君 ; 熊进标 ; 张良 ; 刘晓晶
  • 英文作者:GUO Yuxiang;ZHONG Mingjun;XIONG Jinbiao;ZHANG Liang;LIU Xiaojing;School of Nuclear Science and Engineering,Shanghai Jiao Tong University;State Power Investment Central Research Institute Nuclear Power Software Development Center;
  • 关键词:熔融物与冷却剂相互作用 ; COSMETRIC程序 ; MCBA-SIMPLE算法 ; 多相流模拟
  • 英文关键词:fuel-coolant interaction;;COSMETRIC code;;MCBA-SIMPLE algorithm;;multiphase flow simulation
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:上海交通大学核科学与工程学院;国家电投中央研究院核电软件技术中心;
  • 出版日期:2018-02-05 11:44
  • 出版单位:原子能科学技术
  • 年:2018
  • 期:v.52
  • 基金:国家科技重大专项核电软件评估课题资助项目(2016ZX06004002-004)
  • 语种:中文;
  • 页:YZJS201807023
  • 页数:8
  • CN:07
  • ISSN:11-2044/TL
  • 分类号:153-160
摘要
基于MCBA-SIMPLE算法开发了自主化的多维熔融物与冷却剂相互作用分析程序COSMETRIC。为验证该程序,针对熔融物与冷却剂相互作用实验KROTOS的典型工况进行了模拟计算。通过与KROTOS37实验结果对比,验证了程序模拟高温熔融物与冷却剂混合过程中熔融物液柱碎化、熔融物液滴迁移以及冷却剂蒸发的能力;通过与KROTOS21实验结果对比,验证了程序对蒸汽爆炸压力脉冲峰值及传播速度预测的合理性。在此基础上,对KROTOS21爆炸工况计算的初始空泡份额、熔滴水力学碎化无量纲时间和熔融物碎片初始直径等参数进行了敏感性分析,评估了这些参数对最终压力脉冲的影响。敏感性分析结果发现,较大的初始空泡份额会抑制压力峰值和传播速度;增大熔融物碎片初始直径和水力学碎化无量纲时间,会提升压力波传播速度,降低压力峰值。
        The fuel-coolant interaction analysis code COSMETRIC was developed based on MCBA-SIMPLE algorithm.The code was validated against the representative test cases of KROTOS facility.Comparison between the simulation and KROTOS37 experiment results shows that the code is competent to simulate the corium melt fragmentation and drastic evaporation of coolant during the premixing phase.The code also proves to be reliable to predict the amplitude of peak pressure and propagation speed of pressure shock in explosion phase through comparison with the KROTOS21 testresults.Sensitivity analysis was carried out to further evaluate the influence of the initial void fraction,the dimensionless time scale in the hydrodynamic fragmentation model and the initial fragment size on the magnitude of pressure shock.It is found that lager initial void fraction leads to lower pressure shock and slower propagation speed,while the increased initial fragment size and dimensionless time scale can reduce pressure magnitude but increase the propagation speed.
引文
[1]BOARD S J,HALL R W.Detonation of fuel coolant explosion[J].Nature,1975,254:319-321.
    [2]BOARD S J,HALL R W.Recent advances in understanding large scale vapor explosions,NEA/CSNI-8[R].Tokyo,Japan:[s.n.],1976.
    [3]HUHTINIEMI I,HOHMANN H,MAGALLON D.FCI experiments in the corium/water system[J].Nuclear Engineering and Design,1997,177(1):339-349.
    [4]HUHTINIEMI I,MAGALLON D,HOHMANN H.Results of recent KROTOS FCI tests:Alumina versus corium melts[J].Nuclear Engineering and Design,1999,189(1):379-389.
    [5]MAGALLON D,HUHTINIEMI I.Corium melt quenching tests at low pressure and subcooled water in FARO[J].Nuclear Engineering and Design,2001,204(1):369-376.
    [6]MAGALLON D,HOHMANN H.Experimental investigation of 150-kg-scale corium melt jet quenching in water[J].Nuclear Engineering and Design,1997,177(1):321-337.
    [7]MAGALLON D,HOHMANN H.High pressure corium melt quenching tests in FARO[J].Nuclear Engineering and Design,1995,155(1-2):253-270.
    [8]MAGALLON D,HUHTINIEMI I.Energetic event in fuel-coolant interaction test FARO L-33[C]∥Proceedings of 9th International Conference on Nuclear Engineering(ICONE-9).Nice:[s.n.],2001.
    [9]SAIRANEN R,BERTHOUD G,RATEL G,et al.OECD research program on fuel-coolant interaction steam explosion resolution for nuclear applications-SERENA,Final report-December2006[R].[S.l.]:Organization for Economic Co-operation and Development,2007.
    [10]MEIGNEN R.MC3D V3.5,description of the physical models of the premixing application[R].France:IRSN,2008.
    [11]MEIGNEN R,BERTHOUD G.Fragmentation of molten fuel jets[C]∥Proceeding of the International Seminar on Vapor Explosion and Explosive Eruptions.Sendai:[s.n.],1997.
    [12]FLETCHER D F,ANDERSON R P.A review of pressure-induced propagation models of the vapor explosion process[J].Progress in Nuclear Energy,1990,2(23):137-179.
    [13]LIU C,THEOFANOUS T G.Film boiling on spheres in single and two-phase flows,PartⅠ:Experimental studies[C]∥Proceedings of the National Heat Transfer Conference.Portland,US:ANS,1995.
    [14]ISHII M,CHAWLA T C.Local drag laws in dispersed two-phase flow,NASA STI/Recon Technical Report N.80[R].[S.l.]:NASA,1979.
    [15]MOUKALLED F,DARWISH M,SEKAR B.A pressure-based algorithm for multi-phase flow at all speeds[J].Journal of Computational Physics,2003,190(2):550-571.
    [16]DARWISH M,MOUKALLED F,SEKAR B.A unified formulation of the segregated class of algorithms for multifluid flow at all speeds[J].Numerical Heat Transfer,Part B:Fundamentals,2001,40(2):99-137.
    [17]BRAYER C,BERTHOUD G.First vapor explosion calculations performed with MC3Dthermalhydraulic code[C]∥OECD/CSNI Specialist Meeting on Fuel Coolant Interactions.Tokai-Mura,Japan:JAERI,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700