固冲发动机燃气发生器流量调节优化控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization Control of Flow Regulation of Gas Generator for Solid Rocket Ramjet
  • 作者:柴金宝 ; 陈雄 ; 周景亮 ; 何坤
  • 英文作者:CHAI Jin-bao;CHEN Xiong;ZHOU Jing-liang;HE Kun;School of Mechanical Engineering, Nanjing University of Science and Technology;Systems Engineering Institute of Sichuan Aerospace;
  • 关键词:固冲发动机 ; 燃气发生器 ; 燃气流量调节 ; 负调 ; 动态响应
  • 英文关键词:Solid rocket ramjet;;Gas generator;;Gas flow regulation;;Anti-regulation;;Dynamic response
  • 中文刊名:JSJZ
  • 英文刊名:Computer Simulation
  • 机构:南京理工大学机械工程学院;四川航天系统工程研究所;
  • 出版日期:2018-01-09 15:57
  • 出版单位:计算机仿真
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金资助项目(71171045);; 中央高校基本科研业务费专项基金资助项目(15D110422)
  • 语种:中文;
  • 页:JSJZ201902006
  • 页数:5
  • CN:02
  • ISSN:11-3724/TP
  • 分类号:34-38
摘要
燃气发生器的燃气流量调节既能有效改变固冲发动机的推力,又可使固冲发动机工作点在空燃比附近,保证发动机高效、安全工作的同时具有良好的推力调节能力。但在燃气流量调节系统中存在负调现象,负调量较难控制且难以通过点火实验精确地测量。为了对燃气流量调节进行优化控制,推导了系统的开环传递函数并分析该系统为非最小相位系统。通过从基本工作原理上分析负调现象,解释出负调现象的产生原因是由于压强的响应滞后于喷喉面积的变化,并得出负调现象的起始条件、终止条件及影响因素。以电动锥阀式流量调节系统为例,使用Matlab/Simulink分别对不同的脉冲频率、自由容积、初始喷喉面积条件下的燃气流量动态响应进行仿真。仿真结果验证了理论分析的正确性,并得出适合该系统的驱动步进电机的脉冲频率值,为燃气流量调节的优化控制与实验提供了参考依据。
        Gas generator flow regulation system can not only effectively change the thrust, but also make solid rocket ramjet work near the air-fuel ratio to ensure efficient and safe work of ramjet with good thrust adjustment ability. But it is difficult for the anti-regulation phenomenon occurring in gas flow regulation system to control or measure through ignition experiment. In the paper, open-loop transfer function was established in order to optimize control of gas flow regulation. It is a non-minimum phase system according to analysis. The cause, starting condition, termination condition and influencing factors were explained by analyzing anti-regulation phenomenon from the basic working principle. Taking a cone valve type gas flow regulation system as an example, the dynamic responses of gas flow were simulated respectively applying Matlab/Simulink with different pulse frequency, free volume, and initial throat area. Simulation results verify the correctness of the analysis, and suitable pulse frequency value of step motor for the system is obtained for optimization control and following experiments.
引文
[1] Ronald S Fry. A Century of Ramjet Propulsion Technology Evolution[J]. Journal of Propulsion and Power, 2004,20(1):27-57.
    [2] W Bao, B Li, J Chang. Switching Control of Thrust Regulation and Inlet Buzz Protection for Ducted Rocket[J]. Acta Astronautica, 2010,67(7-8):764-773.
    [3] 何坤. 锥阀式燃气流量调节系统设计与实验研究[D]. 南京理工大学, 2017.
    [4] 聂聆聪,刘志明,刘源祥. 流量可调燃气发生器压力闭环模糊控制算法[J]. 推进技术, 2013,34(4):551-556.
    [5] 牛文玉. 燃气流量可调的固体火箭冲压发动机控制方法研究[D]. 哈尔滨工业大学, 2009.
    [6] 何坤,等. 火箭冲压发动机燃气发生器燃气流量控制设计[J]. 计算机仿真, 2017,34(5):49-52,67.
    [7] 霍东兴,闫大庆,高波. 可变流量固体冲压发动机技术研究进展与展望[J]. 固体火箭技术, 2017,40(1):7-15+23.
    [8] F S Wilkerson, J T.Lucac Variable Flow Solid Propellant Gas Generator for Missile Control Systems[R]. AIAA 81-1464.
    [9] 牛文玉,等. 燃气流量可控的固体火箭冲压发动机燃气发生器动态特性[J]. 固体火箭技术, 2008,31(2):145-148.
    [10] 马立坤,夏智勋,胡建新. 阀门作动速度对流量可调固体火箭冲压发动机动态响应特性的影响[J]. 导弹与航天运载技术, 2012,(2):9-13.
    [11] 李娟,等. 喉栓式推力可调固体火箭发动机动态响应特性数值分析[J]. 固体火箭技术, 2009,32(1):48-52.
    [12] 周俊,周长省,陈雄. 基于BP神经网络固冲发动机燃气流量调节控制[J]. 计算机仿真, 2015,32(1):56-59,201.
    [13] 武晓松,陈军,王栋. 固体火箭发动机原理[M]. 北京:兵器工业出版社, 2010:236-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700