尾喷管可调变流量固冲发动机控制模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of Ducted Rocket Control with Adjustable Gas Flux and Variable Nozzle
  • 作者:李业明 ; 徐向华 ; 彭灿
  • 英文作者:LI Ye-ming;XU Xiang-hua;PENG Can;School of Aerospace, Tsinghua University;
  • 关键词:固冲发动机 ; 燃气流量可调 ; 尾喷管可调 ; 复合调节控制
  • 英文关键词:Solid ducted rocket motor;;Variable gas generator;;Variable nozzle;;Compound control
  • 中文刊名:JSJZ
  • 英文刊名:Computer Simulation
  • 机构:清华大学航天航空学院;
  • 出版日期:2019-02-15
  • 出版单位:计算机仿真
  • 年:2019
  • 期:v.36
  • 语种:中文;
  • 页:JSJZ201902007
  • 页数:6
  • CN:02
  • ISSN:11-3724/TP
  • 分类号:39-44
摘要
针对目前变流量固冲发动机固定几何尾喷管引起的发动机推力性能下降,控制过程发动机稳定性难以保证的问题,提出尾喷管可调与燃气流量可调的复合控制方案。采用集总参数法对固冲发动机建模,对固冲发动机系统进行控制回路划分,设计各个子回路控制方案。使用闭环PID控制方案实现固冲发动机变推力与变高度过程,模拟结果表明变推力与变高度过程均用时较短,参数超调量与负调量小,控制过程平稳快速。得出复合控制方案能保障固冲发动机控制过程的稳定性,维持发动机各个部件工作性能的结论。
        It is difficult for the thrust performance of solid ducted rocket motor declines and the motor to remain stable during the control process due to fixed geometry nozzle. A compound control scheme with variable geometry nozzle and adjustable gas flux is proposed to solve the problem. A lumped parameter method was used to model the motor. The control loop system was divided and the control scheme of each sub loop was designed. Closed loop PID control schemes were applied to achieve variable thrust and variable height. The simulation result indicates that the control targets can be achieved in a short time and the overshoot and negative response amplitude of parameters are small, which means the control scheme works rapidly and steadily. It is concluded that the compound control scheme can guarantee the stability of the control process and maintain the performance of each component of the motor.
引文
[1] R S Fry. A Century of Ramjet Propulsion Technology Evolution[J]. Journal of Propulsion & Power, 2004,20(1):27-58.
    [2] 宋振峰. 俄罗斯温贝尔设计局的火箭冲压发动机[J]. 火箭推进, 2003,29(2):44-47.
    [3] P Hewitt. Status of Ramjet Programs in the United States[R]. AIAA, 5265, 2008.
    [4] M E Thomas, J A Bossard, M J Ostrander. Addressing Emerging Tactical Missle Propulsion Challenges with the Solid Propellant Air-Turbo-Rocket[R]. AIAA 2000-3309.
    [5] H Besser. History of Ducted Rocket Development at Bayern-Chemie[R] AIAA. 5261, 2008.
    [6] L Hans, L Hermann. Fit for Mission-Design Tailoring Aspects of Throttleable Ducted Rocket Propulsion Systems[R]. AIAA. 5262, 2008.
    [7] 李进贤,等. 可调冲压喷管变流量固冲发动机工作特性分析[J]. 固体火箭技术, 2009,32(6): 629-633.
    [8] 邵明玉,王志刚. 复合调节固冲发动机控制方法研究[J]. 固体火箭技术, 2016,39(1):1-8.
    [9] 邵明玉,王志刚. 多变量调节固冲发动机动力学建模及仿真[J]. 固体火箭技术, 2015,38(6):782-788.
    [10] 樊思齐. 航空发动机控制[M]. 西安:西北工业大学出版社, 2008:60-120.
    [11] 白鹏,等. X 型布局导弹冲压发动机攻角特性数值研究[J]. 宇航学报, 2005,26(1): 99-103.
    [12] P C Pinto, G Kurth. Robust Propulsion Control in all Flight Stages of a Throtteable Ducted Rocket[R]. AIAA. 5611, 2011.
    [13] 马立坤,夏智勋,胡建新. 阀门作动速度对流量可调固体火箭冲压发动机动态响应特性的影响[J]. 导弹与航天运载技术, 2012,(2): 8-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700