2014年11月上旬西北太平洋一次极端强度爆发气旋的数值模拟和分片位涡反演分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation and Piecewise Potential Vorticity Inversion Analysis of an Extreme Explosive Cyclone over the Northwest Pacific Ocean in Early November of 2014
  • 作者:姜立智 ; 傅慎明 ; 孙建华 ; 刘靓珂 ; 沈新勇
  • 英文作者:JIANG Lizhi;FU Shenming;SUN Jianhua;LIU Liangke;SHEN Xinyong;Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology;International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences;Key Laboratory of Cloud–Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences;
  • 关键词:爆发气旋 ; 分片位涡反演
  • 英文关键词:Explosive cyclone;;Piecewise potential vorticity inversion
  • 中文刊名:QHYH
  • 英文刊名:Climatic and Environmental Research
  • 机构:南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心;中国科学院大气物理研究所国际气候与环境中心;中国科学院大气物理研究所云降水物理与强风暴重点实验室;
  • 出版日期:2019-03-20
  • 出版单位:气候与环境研究
  • 年:2019
  • 期:v.24;No.118
  • 基金:国家自然科学基金项目41775046、91637211、41530427;; 国家电网公司总部科技项目(NYB17201800148);; 国家重点研发计划2016YFC0203301;; 国家重点基础研究发展计划2015CB453201~~
  • 语种:中文;
  • 页:QHYH201902002
  • 页数:17
  • CN:02
  • ISSN:11-3693/P
  • 分类号:12-28
摘要
基于NCEP 6 h一次,0.5°(纬度)×0.5°(经度)水平分辨率的GFS(Global Forecasting System)再分析数据,利用数值模式WRF(Weather Research and Forecasting),对2014年11月上旬西北太平洋一次极端强度的爆发气旋事件进行了模拟。在成功复制爆发气旋主要特征的基础上,较详细的分析了本次爆发气旋快速发展的有利环境条件,并利用分片位涡反演的方法,对此次爆发气旋的快速发展过程进行了研究,主要结论如下:(1)本次爆发气旋爆发性发展阶段维持了约27 h,其最大加深率约为3.98 Bergeron(气旋加深率单位),最低中心气压约为919.2 hPa。(2)爆发气旋的快速发展与对流层高层高空急流对热量的输送,对流层中层西风带短波槽槽前暖平流和正涡度平流的有利准地转强迫,以及对流层低层暖锋伴随的暖平流过程密切相关。(3)分片位涡反演的结果表明,对流层顶皱褶对应的平流层大值位涡下传和降水凝结潜热过程造成的正位涡异常是本次爆发气旋快速发展的主导因子,而对流层低层的斜压过程贡献相对较小。在气旋爆发期的前期和强盛期,降水凝结潜热释放是爆发气旋发展的最重要因子,而在爆发期后期,随着降水的减弱和爆发气旋的东北向移动,对流层顶皱褶作用所造成的正位涡异常成为维持气旋快速发展的最有利因子。
        On the basis of the 6-hourly NCEP GFS(Global Forecasting System) reanalysis data with a horizontal resolution of 0.5°, an extreme explosive cyclone event occurred in early November 2014 is simulated using the WRF(Weather Research and Forecasting) model. After the key features of this extreme event are well reproduced by the WRF model, this study analyzes the environmental conditions favorable for the rapid development of the cyclone, and investigates the mechanisms for the explosive development of the cyclone using the piecewise potential vorticity inversion method. Main results are as follows:(1) The explosive development of this cyclone lasted for 27 h with a maximum deepening rate of 3.98 Bergeron(unit of cyclone deeping rate), and a minimum central SLP(Sea Level Pressure) of 919.2 hPa.(2) The rapid development of the explosive cyclone was closely related to heat transport by the upper-level jet stream in the upper troposphere, the quasi-geostationary forcing(e.g., warm advection and cyclonic vorticity advection) ahead of a shortwave trough in the middle troposphere and the warm advection accompanied by the warm front in the lower troposphere.(3) The result of piecewise potential vorticity inversion shows that the tropopause-folding-related downward transport of large-value potential vorticity in the stratosphere and the precipitationcondensation-related diabatic heating governed the rapid development of this explosive cyclone, while the baroclinic process in the lower troposphere made the smallest contribution. In the early and middle stages of the explosive development period,the latent heat release is the most important factor for the cyclone's development. In contrast, in the late stage of the explosive development period, because the precipitation weakened and the cyclone entered a strong tropopause folding region, the tropopause folding became the most favorable factor for maintaining the rapid development of the cyclone.
引文
Allen J T,Pezza A B,Black M T.2010.Explosive cyclogenesis:A global climatology comparing multiple reanalyses[J].J.Climate,23(24):6468-6484,doi:10.1175/2010JCLI3437.1.
    Chen S J,Dell'osso L.1987.A Numerical case study of East Asian coastal cyclogenesis[J].Mon.Wea.Rev.,115(2):477-487,doi:10.1175/1520-0493(1987)115<0477:ANCSOE>2.0.CO;2.
    Chen S J,Kuo Y H,Zhang P Z et al.1992.Climatology of explosive cyclones off the East Asian coast[J].Mon.Wea.Rev.,120(12):3029-3035,doi:10.1175/1520-0493(1992)120<3029:COECOT>2.0.CO;2.
    Davis C A,Emanuel K A.1991.Potential vorticity diagnostics of cyclogenesis[J].Mon.Wea.Rev.,119(8):1929-1953,doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.
    Davis C A,Grell E D,Shapiro M A.1996.The balanced dynamical nature of a rapidly intensifying oceanic cyclone[J].Mon.Wea.Rev.,124(1):3-26,doi:10.1175/1520-0493(1996)124<0003:TBDNOA>2.0.CO;2.
    丁治英,王劲松,翟兆峰.2001.爆发气旋的合成诊断及形成机制研究[J].应用气象学报,12(1):30-40.Ding Zhiying,Wang Jinsong,Zhai Zhaofeng.2001.The reserch for explosive cyclones on composite diagnosis and mechanics[J].Quarterly Journal of Applied Meteorology(in Chinese),12(1):30-40,doi:10.3969/j.issn.1001-7313.2001.01.004.
    Dudhia J.1989.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].J.Atmos.Sci.,46(20):3077-3107,doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
    Egger J.2009.Piecewise potential vorticity inversion and vortex interaction[J].J.Atmos.Sci.,66(10):3208-3216,doi:10.1175/2009JAS3079.1.
    Emanuel K A,Raymond D J.1993.The Representation of Cumulus Convection in Numerical Models[M].Boston,MA:American Meteorological Society.
    费建芳,李波,黄小刚,等.2011.位涡反演理论在台风领域中的应用研究进展[J].大气科学学报,34(5):621-626.Fei Jianfang,Li Bo,Huang Xiaogang,et al.2011.Advances in application of potential vorticity inversion theory in typhoon research[J].Transactions of Atmospheric Sciences(in Chinese),34(5):621-626,doi:10.3969/j.issn.1674-7097.2011.05.013.
    Fu S M,Sun J H,Sun J R.2014.Accelerating two-stage explosive development of an extratropical cyclone over the northwestern Pacific Ocean:A piecewise potential vorticity diagnosis[J].Tellus A:Dynamic Meteorology and Oceanography,66(1):23210,doi:10.3402/tellusa.v66.23210.
    Holton J R,Staley D O.2004.An introduction to dynamic meteorology[J].American Journal of Physics,41(5):752-754.
    Hong S Y,Lim J O J.2006.The WRF single-moment 6-class microphysics scheme(WSM6)[J].Journal of the Korean Meteorological Society,42(2):129-151.
    Hong S Y,Noh Y,Dudhia J.2006.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Mon.Wea.Rev.,134(9):2318-2341,doi:10.1175/MWR3199.1.
    Hoskins B J,Mc Intyre M E,Robertson A W.1985.On the use and significance of isentropic potential vorticity maps[J].Quart.J.Roy.Meteor.Soc.,111(470):877-946,doi:10.1002/qj.49711147002.
    黄立文,秦曾灏,吴秀恒,等.1999.海洋温带气旋爆发性发展数值试验[J].气象学报,57(4):410-427.Huang Liwen,Qin Zenghao,Wu Xiuheng,et al.1999.Numerical simulation and experiment study on explosive marine cyclones[J].Acta Meteorologica Sinica(in Chinese),57(4):410-427,doi:10.11676/qxxb1999.039.
    Iwao K,Inatsu M,Kimoto M.2012.Recent changes in explosively developing extratropical cyclones over the winter northwestern Pacific[J].J.Climate,25(20):7282-7296,doi:10.1175/JCLI-D-11-00373.1.
    Kain J S.2004.The Kain Fritsch convective parameterization:An update[J].J.Appl.Meteor.,43(1):170-181,doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
    Koshyk J N,Mcfarlane N A.1996.The potential vorticity budget of an atmospheric general circulation model[J].J.Atmos.Sci.,53(4):550-563,doi:10.1175/1520-0469(1996)053<0550:TPVBOA>2.0.CO;2.
    Kuwano-Yoshida A,Asuma Y.2008.Numerical study of explosively developing extratropical cyclones in the northwestern Pacific region[J].Mon.Wea.Rev.,136(2):712-740,doi:10.1175/2007MWR2111.1.
    李长青,丁一汇.1989.西北太平洋爆发气旋的诊断分析[J].气象学报,47(2):180-190.Li Changqing,Ding Yihui.1989.A diagnostic study of an explosively deepening oceanic cyclone over the Northwest Pacific Ocean[J].Acta Meteorologica Sinica(in Chinese),47(2):180-190,doi:10.11676/qxxb1989.023.
    Lupo A R,Smith P J,Zwack P.1992.A diagnosis of the explosive development of two extratropical cyclones[J].Mon.Wea.Rev.,120(8):1490-1523,doi:10.1175/1520-0493(1992)120<1490:ADOTED>2.0.CO;2.
    Martin J E,Marsili N.2002.Surface cyclolysis in the North Pacific Ocean.Part II:Piecewise potential vorticity diagnosis of a rapid cyclolysis event[J].Mon.Wea.Rev.,130(5):1264-1281,doi:10.1175/1520-0493(2002)130<1264:SCITNP>2.0.CO;2.
    Mlawer E J,Taubman S J,Brown P D,et al.1997.Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated-k model for the longwave[J].J.Geophys.Res.,102(D14):16663-16682,doi:10.1029/97JD00237.
    Murty T S,Mcbean G A,Mckee B.1983.Explosive cyclogenesis over the Northeast Pacific Ocean[J].Mon.Wea.Rev.,111(5):1131-1135,doi:10.1175/1520-0493(1983)111<1131:ECOTNP>2.0.CO;2.
    Sanders F,Gyakum J R.1980.Synoptic-dynamic climatology of the”bomb”[J].Mon.Wea.Rev.,108(10):1589-1606,doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.
    Spengler T,Egger J.2012.Potential vorticity attribution and causality[J].J.Atmos.Sci.,69(8):2600-2607,doi:10.1175/JAS-D-11-0313.1.
    Uccellini L W,Johnson D R.1979.The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms[J].Mon.Wea.Rev.,107(6):682-703,doi:10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2.
    Wu L T,Martin J E,Petty G W.2011.Piecewise Potential vorticity diagnosis of the development of a polar low over the Sea of Japan[J].Tellus A:Dynamic Meteorology and Oceanography,63(2):198-211,doi:10.1111/j.1600-0870.2011.00511.x.
    Yoshida A,Asuma Y.2004.Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region[J].Mon.Wea.Rev.,132(5):1121-1142,doi:10.1175/1520-0493(2004)132<1121:SAEOED>2.0.CO;2.
    Zwack P,Okossi B.1986.A new method for solving the quasi-geostrophic omega equation by incorporating surface pressure tendency data[J].Mon.Wea.Rev.,114(4):655-666,doi:10.1175/1520-0493(1986)114<0655:ANMFST>2.0.CO;2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700